
August 2001

NASA/TM-2001-211049

Buckets: Smart Objects for Digital Libraries

Michael L. Nelson
Langley Research Center, Hampton, Virginia

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASAÕs scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASAÕs institutional
mechanism for disseminating the results of its
research and development activities. These
results are published by NASA in the NASA STI
Report Series, which includes the following
report types:

· TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results of
NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

· TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary
or of specialized interest, e.g., quick release
reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

· CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

· CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by
NASA.

· SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

· TECHNICAL TRANSLATION. English-

language translations of foreign scientific
and technical material pertinent to NASAÕs
mission.

Specialized services that complement the STI
Program OfficeÕs diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results ... even providing videos.

For more information about the NASA STI
Program Office, see the following:

· Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

· E-mail your question via the Internet to

help@sti.nasa.gov

· Fax your question to the NASA STI Help

Desk at (301) 621-0134

· Phone the NASA STI Help Desk at

(301) 621-0390

· Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

August 2001

NASA/TM-2001-211049

Buckets: Smart Objects for Digital Libraries

Michael L. Nelson
Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

ABSTRACT

BUCKETS: SMART OBJECTS FOR DIGITAL LIBRARIES

Michael L. Nelson
Old Dominion University, 2000

Director: Dr. Kurt Maly

Current discussion of digital libraries (DLs) is often dominated by the merits of

the respective storage, search and retrieval functionality of archives, repositories, search

engines, search interfaces and database systems. While these technologies are necessary

for information management, the information content is more important than the systems

used for its storage and retrieval. Digital information should have the same long-term

survivability prospects as traditional hardcopy information and should be protected to

the extent possible from evolving search engine technologies and vendor vagaries in

database management systems. Information content and information retrieval systems

should progress on independent paths and make limited assumptions about the status or

capabilities of the other.

Digital information can achieve independence from archives and DL systems

through the use of buckets. Buckets are an aggregative, intelligent construct for publishing

in DLs. Buckets allow the decoupling of information content from information storage

and retrieval. Buckets exist within the Smart Objects and Dumb Archives model for DLs

in that many of the functionalities and responsibilities traditionally associated with

archives are Òpushed downÓ (making the archives ÒdumberÓ) into the buckets (making

them ÒsmarterÓ). Some of the responsibilities imbued to buckets are the enforcement of

their terms and conditions, and maintenance and display of their contents. These

additional responsibilities come at the cost of storage overhead and increased complexity

for the archived objects. However, tools have been developed to manage the complexity,

ii

and storage is cheap and getting cheaper; the potential benefits buckets offer DL

applications appear to outweigh their costs.

We describe the motivation, design and implementation of buckets, as well as our

experiences deploying buckets in two experimental DLs. We also introduce two modified

forms of buckets: a Òdumb archiveÓ (DA) and the Bucket Communication Space (BCS).

DA is a slightly modified bucket that performs simple set management functions. The

BCS provides a well-known location for buckets to gain access to centralized bucket

services, such as similarity matching, messaging and metadata conversion. We also

discuss experiences learned from using buckets in the NCSTRL+ and Universal Pre-print

Server (UPS) experimental digital libraries. We conclude with comparisons to related

work and discussion about possible areas for future work involving buckets.

iii

ACKNOWLEDGMENTS

This dissertation was made possible through the assistance, encouragement and

patience of many people. Foremost among these people are the members of my

committee. Kurt Maly provided the direct advisement, insight and strategic vision

necessary for the definition, refinement and wide adoption of the research results.

Stewart Shen and Mohammad Zubair were constant supporters and more than

occasionally devilÕs advocates during our weekly meetings. Frank Thames provided much

of my initial motivation to pursue a Ph.D., and David KeyesÕ encouragement is the reason

I chose to obtain it at Old Dominion University.

Many fellow students at Old Dominion University have positively affected my

research. Xiaoming Liu, Mohamed Kholief, Shanmuganand Naidu, Ajoy Ranga, and

Hesham Anan are among those that have made design or coding suggestions, developed

supporting technologies, and ferreted out many bugs.

NASA Langley Research Center has provided me with the opportunity and

resources to perform digital library research and development. These current and former

NASA colleagues have provided technical, financial and moral support in the breadth of

my digital library activities at Langley: David Bianco, Aileen Biser, David Cordner,

Delwin Croom, Sandra Esler, Gretchen Gottlich, Nancy Kaplan, Mike Little, Ming-

Hokng Maa, Mary McCaskill, Daniel Page, Steve Robbins, Joanne Rocker, George

Roncaglia, and Melissa Tiffany.

A number of people outside Old Dominion University and Langley Research

Center played significant roles in supporting the development and adoption of buckets.

Among these people are: Herbert Van de Sompel (University of Ghent), Marcia Dreier

(Air Force Research Laboratory) and Rick Luce (Los Alamos National Laboratory).

Finally, I would like to thank Rod Waid for the creation of the lovable ÒPhilÓ

character that eventually evolved into our research groupÕs mascot, and Danette Allen for

her patience and support.

iv

TABLE OF CONTENTS

PAGE

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

Chapter

1. INTRODUCTIONÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ... 1

2. MOTIVATION AND OBJECTIVESÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 6

2.1 Why Digital Libraries? ÉÉÉÉÉÉÉÉÉ..ÉÉÉÉÉÉÉÉ. 6
2.1.1 Digital Libraries vs. the World Wide Web ÉÉÉÉÉÉ.. 8
2.1.2 Digital Libraries vs. Relational Database Management
 Systems ÉÉÉÉÉÉ...ÉÉÉÉÉÉÉÉÉÉÉÉÉ 9

2.2 Trends in Scientific and Technical Information ExchangeÉÉÉÉ... 10
2.3 Information Survivability ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ... 13
2.4 Objectives and Design Goals ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 15

2.4.1 Aggregation ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 15
2.4.2 Intelligence ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ... 16
2.4.3 Self-Sufficiency ÉÉÉÉÉÉÉÉ..ÉÉÉÉÉÉÉÉ. 16
2.4.4 Mobility ÉÉÉÉÉ..ÉÉÉÉÉÉÉÉÉÉÉÉÉ... 17
2.4.5 Heterogeneity. ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 18
2.4.6 Archive Independence ..ÉÉÉÉÉÉÉÉÉÉ..ÉÉÉ. 18

3. BUCKET ARCHITECTURE ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 19

3.1 Overview ÉÉ.ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ... 19
3.2 Implementation ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 24

3.2.1 Bucket Methods ÉÉÉ..ÉÉÉÉÉÉÉÉÉÉÉÉÉ 26
3.2.2 File Structure ÉÉÉÉÉÉÉÉÉÉÉÉÉ..ÉÉÉÉ 30
3.2.3 Terms and Conditions ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 33
3.2.4 Internal Bucket OperationÉÉÉÉÉÉÉÉÉÉÉÉÉ 38
3.2.5 Metadata Extensions ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ... 39

3.3 Discussion ÉÉÉÉÉÉÉÉÉÉ...ÉÉÉÉÉÉÉÉÉÉÉ... 41
3.3.1 Bucket Preferences ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 41
3.3.2 Systems Issues ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 43

4. DUMB ARCHIVES ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 47

4.1 Overview ÉÉÉ.ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ... 47
4.1.1 The SODA DL Model ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 47
4.1.2 Archive Design Space ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 49
4.1.3 Publishing in the SODA Model ÉÉÉÉÉÉÉÉÉÉ.. 50

4.2 Implementation ÉÉÉÉÉÉÉÉÉÉÉ...ÉÉÉÉÉÉÉÉ... 51

v

PAGE

4.2.1 Implemented Methods ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 52
4.2.2 Changes from a Regular Bucket ÉÉÉÉÉÉÉÉÉÉ... 52

4.3 Discussion ÉÉÉÉÉ.ÉÉÉÉÉÉÉÉÉ...ÉÉÉÉÉÉÉ.. 53
4.3.1 DA Examples ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 53
4.3.2 DBM Implementation Notes ÉÉÉÉÉÉÉÉÉÉÉ.. 56
4.3.3 Open Archives Initiative Dienst Subset Mapping ÉÉÉ.. 57

5. BUCKET COMMUNICATION SPACE ÉÉÉÉ...ÉÉÉÉÉÉÉÉ... 60

5.1 Overview ÉÉ.ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ... 60
5.1.1 File Format Conversion ÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 61
5.1.2 Metadata Conversion ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 61
5.1.3 Bucket Messaging ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ... 62
5.1.4 Bucket Matching ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 62

5.2 Implementation ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 63
5.2.1 Implemented Methods ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 63
5.2.2 Changes from a Regular Bucket ÉÉÉÉÉÉÉÉÉÉ.. 68

5.3 Discussion ÉÉÉÉÉ.ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 69
5.3.1 Performance Considerations ÉÉÉÉÉÉÉÉÉÉÉÉ 69
5.3.2 Current Limitations ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 72

6. BUCKET TESTBEDS ÉÉÉÉÉÉÉÉÉ..ÉÉÉÉÉÉÉÉÉÉÉ. 74

6.1 NCSTRL+ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 74
6.1.1 Dienst ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 74
6.1.2 Clusters ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ... 76

6.2 Universal Preprint Server ÉÉÉÉÉ...ÉÉÉÉÉÉÉÉÉÉÉ 77
6.2.1 Lightweight Buckets ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 78
6.2.2 SFX Reference Linking in Buckets ÉÉÉÉÉÉÉÉÉ.. 79

7. RELATED WORK ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 83

7.1 Aggregation ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 83
7.1.1 Kahn/Wilensky Framework and Derivatives ÉÉÉÉÉ.. 83
7.1.2 Multivalent Documents ÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 83
7.1.3 Open Doc and OLE ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 84
7.1.4 Metaphoria ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 84
7.1.5 VERS Encapsulated Objects ÉÉÉÉÉÉÉÉÉÉÉ... 84
7.1.6 Aurora ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 85
7.1.7 Electronic Commerce ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 85
7.1.8 Filesystems and File Formats ÉÉÉÉÉÉÉÉÉÉÉ. 86

7.2 Intelligence ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 86
7.3 Archives ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 87

vi

PAGE

7.4 Bucket Tools ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 88

8. FUTURE WORK ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 92

8.1 Alternate Implementations ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 92
8.1.1 Buckets ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 92
8.1.2 Dumb Archives ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ... 93
8.1.3 Bucket Communication Space ÉÉÉÉÉÉÉÉÉÉÉ. 93

8.2 Extended Functionality ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 93
8.2.1 Pre-defined Packages and Elements ÉÉÉÉÉ..ÉÉÉ... 94
8.2.2 XML Metadata ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ... 94
8.2.3 More Intelligence ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 95

8.3 Security, Authentication and Terms & Conditions ÉÉÉÉÉÉ... 95
8.4 New Applications ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 97

8.4.1 Discipline-Specific Buckets ÉÉÉÉÉÉÉÉ...ÉÉÉ. 97
8.4.2 Usage Analysis ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 97
8.4.3 Software Reuse ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 98

9. RESULTS AND CONCLUSIONS ÉÉÉÉÉ..ÉÉÉÉÉÉÉÉÉÉÉ 99

REFERENCES ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 102

APPENDICES

 A. BUCKET VERSION HISTORY ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 114

 B. BUCKET API ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 118

 C. DA API ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 150

 D. BCS API ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 156

vii

LIST OF TABLES

TABLE PAGE

 1. System configurations used for bucket testingÉÉÉÉÉÉÉÉÉÉÉ... 25

 2. Bucket API ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 27

 3. Reserved packages ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 32

 4. Directives available in T&C files ÉÉÉÉÉÉ..ÉÉÉÉÉÉÉÉÉÉ. 37

 5. Bucket preferences ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 42

 6.The archive design space ÉÉÉÉÉ...ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ... 50

 7. DA API ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ... 52

 8. OAi ® DA mapping ÉÉÉÉÉÉÉ.ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 59

 9. BCS API ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 64

10. UPS participants ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 78

viii

LIST OF FIGURES

FIGURE PAGE

 1. DL component technologies ...ÉÉÉÉÉÉ...ÉÉÉÉÉÉÉÉÉÉÉ.. 9

 2. Pyramid of publications for a single project/concept ÉÉÉ..ÉÉ...ÉÉÉ. 11

 3. Pyramid of publications rests on unpublished STI ÉÉÉÉÉ..ÉÉÉÉ... 12

 4. STI lost over time ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 15

 5. Model of a typical NASA STI bucket É...ÉÉÉÉÉÉÉ.ÉÉ...ÉÉÉ. 21

 6. Sample project bucket ÉÉÉÉ.ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 22

 7. Sample course bucket ÉÉ..ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 23

 8. Output of the ÒdisplayÓ method ÉÉÉ...ÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 28

 9. Thumbnails in the ÒdisplayÓ method ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 31

10. Bucket structure ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 32

11. RFC-1807 metadata ÉÉÉ.ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 40

12. The three strata of DLs ÉÉÉÉÉ..ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 48

13. The SODA publishing model ÉÉ.ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ 51

14. Population of the DA ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 54

15. DA query (?method=da_put&adate=<20000101) ÉÉÉÉÉÉÉ.ÉÉ... 55

16. DA query (?method=da_put&adate=19940101-20000101&subject=cs) .É 55

17. DA query (?method=da_put&subject=phys) ÉÉÉÉÉ.ÉÉÉÉÉÉ.. 56

18. NACA bucket before similarity matching ÉÉÉÉÉÉÉÉ...ÉÉÉÉ... 66

19. NACA bucket after similarity matching ÉÉÉÉÉÉÉÉ...ÉÉÉÉÉ. 67

20. Sample similarity matching matrix ÉÉÉÉÉ...ÉÉÉÉ..ÉÉÉÉÉÉ 70

21. Partitioning of the similarity matching matrix ÉÉ..ÉÉÉÉÉÉÉÉÉ.. 72

22. NCSTRL+ lineage ÉÉÉÉÉÉÉÉÉÉÉ.ÉÉÉÉÉÉÉÉÉÉÉ. 74

23. A UPS bucket with SFX buttons ÉÉÉÉÉ..ÉÉÉÉÉÉÉÉÉÉÉ. 80

24. SFX interface ÉÉÉÉÉÉ.ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ. 81

25. Creation tool ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..ÉÉÉÉÉÉÉÉÉÉ. 89

ix

FIGURE PAGE

26. Management tool ÉÉÉÉÉÉ..ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 90

27. Administration tool ÉÉÉÉ..ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.. 91

1

CHAPTER ONE

INTRODUCTION

Although digital libraries (DLs) pre-date the World Wide Web (WWW) (Berners-

Lee, Cailliau, Groff, &Pollermann, 1992), the popularity and prevalence of the WWW has

focused attention on DLs for both the general user and research communities. The WWW

provides ubiquitous access to distributed information content. However, finding

information in the WWW can be difficult. It is estimated that the best WWW search

engines contain less than 35% of the total indexable WWW, with some as little as 3%

(Lawrence & Giles, 1998). DLs are seen as a way to define gardens of information in a

vast, untamed forest of spurious information resources. DLs are now commonly used in

science, technology, arts and humanities. In some cases, they provide an on-line analogue

of traditional libraries, but without the geographic or temporal limitations. In other cases,

DLs are being used to create and disseminate collections of information that had not been

previously feasible or possible to collect in traditional libraries.

We begin with the observation that information content is more important than

the systems used to store and retrieve it. While this seems obvious enough, this fact is

often obscured during discussions of DLs. Instead, the focus of DL discussions is

primarily on the merits of specific relational database mangers (RDBMs), search engines,

the programming language or systems used, and other implementation specific details.

This is because when a specific DL implementation is chosen, the services it provides

(e.g., searching, browsing, document access) are often vertically integrated with the

content it services, sometimes done purposefully, in an attempt to control the intellectual

property rights to the object. However, such tight integration is at odds with the goals of

easily transitioning to future DL systems and concurrent support of multiple DL access

to a single collection of data objects. Even in many DL systems that have the direct goal

ÑÑÑÑÑÑÑ
The journal model for this dissertation is the Journal of the American Society for
Information Science.

2

of having an open architecture, with multiple searching, browsing and other user interfaces

possible, there is an assumption of tightly tying the data objects to a single service that

controls their access. For example, in the open architecture DL proposal of Lagoze &

Payette (1998), the integration of repository and object is explicitly stated:

ÒThe repository service provides the mechanism for the deposit,
storage, and access to digital objects. A digital object is considered
contained within a repository if the URN of that object resolves to the
respective repository (and, thus, access to the object is only available
via a service request to that repository).Ó

Our approach begins with promoting the importance of the information objects

above that of the DL systems used for their storage, discovery, and management. Within

the context of DLs, we make the information objects Òfirst-class citizensÓ. We propose

decoupling information objects from the systems used for their storage and retrieval,

allowing the technology for both DLs and information content to progress independently.

Paepcke (1996) argues that Òsearching is not enoughÓ and that DLs need to provide a

wide range of value-added services, far more than DLs currently provide. We agree with

this position, and feel that dismantling the current stovepipe of ÒDL-archive-contentÓ is

the first step in building richer DL experiences for users.

To demonstrate this partitioning between DLs, archives and information content,

we introduce ÒbucketsÓ. Buckets are aggregative, intelligent, object-oriented constructs

for publishing in digital libraries. They are partially similar in design to Kahn-Wilensky

Digital Objects (DOs) (Kahn & Wilensky, 1995), but with a few significant differences

and are optimized for DL applications. Although buckets could accurately be described as

ÒarchiveletsÓ, the name ÒbucketsÓ was chosen for several reasons: First of all it is easy to

pronounce and has a strong visual metaphor for its aggregation capability. Most

importantly, the target user community (not all of which are computer scientists) warmed

to it more than variations on ÒobjectÓ, ÒpackageÓ and other popular computer science

terms.

3

Buckets exist within the ÒSmart Objects, Dumb ArchivesÓ (SODA) DL model

(Maly, Nelson, & Zubair, 1999). The SODA DL model dictates that functionalities

traditionally associated with archives are pushed down into the buckets, making the

buckets ÒsmarterÓ and the archives ÒdumberÓ. Some of a bucketÕs responsibilities

include: storing, tracking, and enforcing its own terms and conditions (T&C);

maintenance, display and dissemination of its contents; maintaining its own logs of

actions and errors; and informing appropriate parties when certain events occur. Buckets

provide mechanism, not policy. Buckets have no assumptions about their content, T&C,

their deployment profile or other matters. However, the mechanisms that buckets and

their related tools provide should be sufficient to implement an organizationÕs policy.

The motivation for buckets came from previous experience in the design,

implementation and maintenance of NASA scientific and technical information (STI) DLs,

including the Langley Technical Report Server (LTRS) (Nelson, Gottlich, & Bianco, 1995;

Nelson & Gottlich, 1994), the NASA Technical Report Server (NTRS) (Nelson, Gottlich,

Bianco, et al., 1995), and the NACA Technical Report Server (NACATRS) (Nelson,

1999). Buckets can trace their evolution back to the NACATRS project, which featured

what we now call Òproto-bucketsÓ. Objects in the NACATRS had many of aggregation

features of buckets, but lacked the additional features such as intelligence and did not have

a well-defined application programming interface (API).

In early user evaluation studies on these DLs, one reoccurring theme was detected.

While access to the technical report (or re/pre-print) was desirable, users particularly

wanted access to the raw data collected during the experiments, the software used to

reduce the data, and the ancillary information that went into the production of the

published report (Roper, McCaskill, Holland, et al., 1994). The need for NASA research

projects to deliver not just a report, but also software and supporting technologies was

identified as early as 1980 (Sobieski, 1994), but NASAÕs treatment of non-report STI has

remained uneven. Reports continue to receive the primary focus, and the interest and

capacity to archive and disseminate other information types (data, notes, software, audio,

4

video) ebbs and flows. The interest here is to create a set of capabilities to permit DLs to

accommodate requests for substantially more information than just finalized reports.

However, rather than setup separate DLs for each information type or stretch the

definition of a traditional report to include various multi-media formats, the desire was to

define an arbitrary digital object that could capture and preserve the potentially intricate

relationship between multiple information types.

Additionally, our experiences with updating the DLs and making the content

accessible through other DLs and web-crawlers led to the decision to make the

information objects intelligent. We wanted the objects to receive maximum exposure, so

we did not want them ÒtrappedÓ inside our DLs, with the only method for their

discovery coming from our DL interface. However, the DL should have more than just an

exportable description of how to access the objects in the DL. The information object

should be independent of the DL, with the capability to exist outside of the DL and move

in and out of different DLs in the future. However, to not assume which DL was used to

discover and access the buckets means that the buckets must be self-sufficient and

perform whatever tasks are required of them, potentially without the benefit of being

arrived at through a specific DL. Multiple implementations of buckets are possible.

However, for the bucket implementation presented here, the following requirements must

be met for the computer hosting the buckets:

- a hypertext transfer protocol (http) (Fielding, Gettys, Mogul, et al., 1999)

server that implements the common gateway interface (CGI) specification.

- a Perl 5 interpreter (Wall, Christiansen, & Schwarz, 1996) that the bucket can

find.

As long as these two requirements are met, the buckets will be able to function.

The buckets have a ÒbunkerÓ mentality: even if the various search engines, DLs and other

resources normally used for their discovery moves, breaks, or otherwise degenerates,

5

buckets should continue to function. The well being of a bucket depends on the lowest

possible common denominator: a CGI http server and Perl interpreter, and not on more

complex and possibly transient DL services.

The outline for the rest of this thesis is as follows: Chapter Two provides the

motivation for DLs and buckets, and design goals of buckets. Chapter Three discusses

the bucket architecture and implementation. Chapter Four discusses the dumb archive

architecture and implementation. Chapter Five discusses the architecture and

implementation of the Bucket Communication Space. Chapter Six describes how buckets

were used in two prototype DLs: NCSTRL+ and the Universal Preprint Service (UPS).

Chapter Seven compares and contrasts buckets with related work, and Chapter Eight

discusses some of the possible future work. Chapter Nine provides the conclusions and

summary.

6

CHAPTER TWO

MOTIVATION AND OBJECTIVES

2.1 Why Digital Libraries?

The preservation and sharing of its intellectual output and research experiences is

the primary concern for all research institutions. However, in practice information

preservation is often difficult, expensive and not considered during the information

production phase. For example, Henderson (1999) provides data showing for the period

of 1960-1995 that Òknowledge conservation grew half as much as knowledge outputÓ, as a

result of research library funding decreasing relative to increasing research and

development spending (and a corresponding increase in publications). In short, more

information is being produced, and it is being archived and preserved in fewer libraries,

with each library having fewer resources. Though eloquent arguments can be presented

for the role for and purpose of traditional libraries and data can be presented for the

monetary savings libraries can provide (Griffiths & King, 1993), the fact remains that

traditional libraries are expensive. Furthermore, the traditional media formats (i.e. paper,

magnetic tapes) housed in the traditional libraries are frail, requiring frequent upkeep and

are subject to environmental dangers (Lesk, 1997; United States General Accounting

Office, 1990). DL technologies have allowed some commercial publishers to become

more involved with library functions, serving on the WWW the byproducts of their

publishing process (PostScript, PDF, etc.). However, ultimately the goals of publishers

and the goals of libraries are not the same, and the long-term commitment of publishers to

provide library-quality archival and dissemination services is in doubt (Arms, 1999).

While not a panacea, an institutionÕs application of DL technologies will be an integral

part of their knowledge usage and preservation effort, in either supplanting or

supplementing traditional libraries.

7

All of this has tremendous impact on a U.S. Government agency like NASA.

Beyond attention grabbing headlines for its various space programs, NASA ultimately

produces information. The deliverables of NASAÕs aeronautical and space projects are

information for either a targeted set of customers (e.g., Boeing) or for science and

posterity. The information deliverables can have many forms: publications in the open

literature; a self-published technical report series; and non-traditional STI media types

such as data and software. NASA contributions to the open literature are subject to the

same widening gap in conservation and output identified by Henderson (1999). For

some, the NASA report series is either unknown or hard to obtain (Roper, McCaskill,

Holland, et al., 1994). For science data, NASA has previously been criticized for poor

preservation of this data (United States General Accounting Office, 1990). However,

NASA has identified and is addressing these problems with ambitious goals. From the

NASA STI Program Plan (NASA, 1998):

 ÒBy the year 2000, NASA will capture and disseminate all NASA STI
and provide access to more worldwide mission-related information for
its customers. When possible and economical, this information will be
provided directly to the desktop in full-text format and will include
printed material, electronic documentation, video, audio, multimedia
products, photography, work-in-progress, lessons-learned data,
research laboratory files, wind tunnel data, metadata, and other
information from the scientific and technical communities that will help
ensure the competitiveness of U.S. aerospace companies and
educational institutions.Ó

Although tempered with the phrase Òpossible and economicalÓ, it is clear that the

expectations are much higher than simply automating traditional library practices. Much

of the STI identified above has historically not been included in traditional library efforts,

primarily because of the mismatch in hard- and soft-copy media formats. However, the

ability to now document the entire research process and not just the final results presents

entirely new challenges about how to acquire and manage this increased volume of

information. To effectively implement the above mandate, additional DL technology is

required.

8

2.1.1 Digital Libraries vs. the World Wide Web

A common question regarding DLs is ÒWhy not just use existing WWW

tools/methods?Ó Indeed, most DLs use the WWW as the access and transport

mechanism. However, it is important to note that while the WWW meets the rapidity

requirement of STI dissemination, it has no intrinsic management or archival functions.

Just as a random collection of books and serials do not make a traditional library, a

random collection of WWW pages does not make a DL. A DL must possess acquisition,

management, and maintenance processes. These processes will vary depending on the

customers, providers and nature of the DL, but these processes will exist in some format,

implicitly or explicitly.

There have been proposals to subvert the traditional publication process with

authors self-publishing from their own WWW pages (Harnad, 1997). However, while

this availability is useful, pre-prints (or re-prints) linked from a researcherÕs personal

home page are less resilient to changes in computer infrastructure, organization changes,

and personnel turnover. Ignoring the socio-political issues of (digital) collegial

distribution, there is an archival, or longevity, element to DLs which normal WWW usage

does not satisfy. The average lifetime of a uniform resource locator (URL) has been

estimated at 44 days (Kahle, 1997), clearly insufficient for traditional archival

expectations. Uniform Resource Names (URNs) can be used to address the transient

nature of URLs. URNs provide a unique name for a WWW object that can be mapped to

a URL by a URN server. The relationship between URNs and URLs is the same as

Internet Protocol (IP) names and IP addresses, respectively. CNRI Handles (Sun &

Lannom, 2000), Persistent URLs (Purls) (Shafer, Weibel, Jul, & Fausey, 1996) and

Digital Object Identifiers (DOIs) (Paskin, 1999) are some common URN

implementations. However, no URN implementation has achieved the ubiquity of URL

use, and significant maintenance is required to keep a large collection of URNs current. In

summary, a DL defines a well-known location for STI to be placed, managed, and

9

accessed. Given the prevalence of the WWW, the well-known location that a DL

provides is likely to be WWW accessible.

FIG. 1. DL component technologies.

2.1.2 Digital Libraries vs. Relational Database Management Systems

Perhaps the second most common question after ÒWhy not just use the WWW?Ó

is ÒWhy not just use a database?Ó The answer to the database question is subtler.

Generally relational databases are less well suited for more generalized information

retrieval (IR) requirements typical of library applications, which often feature boolean or

vector search engines. Two main differences between traditional IR systems and relational

databases management systems (RDBMS) is that the data objects in IR systems are

documents, which are less structured than the tables of relations which are the data

objects in RDBMs (Frakes & Baeza-Yates, 1992). Also, retrieval in an IR system is

probabilistic, as opposed to deterministic in a RDBMS (Frakes & Baeza-Yates, 1992).

Some commercial and professional society DLs are constructed with web pages indexed

WWW (http) Access

(most common)

 non-WWW
 Access

 (now uncommon)

Other
Technologies

Digital Library Services

(searching, browsing, citation anlaysis
usage analysis, alerts)

Vector
and/or

Boolean
Search Engines

(traditional IR)

RDBMS
File

Systems

Content

10

by traditional IR search engines, including the Institute for Electrical and Electronics

Engineers (IEEE) Computer Society DL, which uses the ÒAutonomyÓ search engine and

D-Lib Magazine DL which uses the ÒExciteÓ search engine.

However, it is possible to use a RDBMS to build a DL, especially if high-quality,

structured metadata is available from which tables can be built. This is the approach of

the IBM ÒDB2 DLÓ commercial product and the Association for Computing Machinery

(ACM), which uses an ÒOracleÓ RDBMS for its DL. A DL is the union of its content and

the services it provides on that content. A traditional IR search engine or a RDBMS,

insofar as they provide only a single service (searching), are just components of a DL, not

the DL itself. The relationship between the WWW, traditional IR search engines, DLs,

RDBMS, and other technologies is illustrated in Figure 1.

2.2 Trends in Scientific and Technical Information Exchange

Rapidity and breadth of communication have always been significant requirements

in the exchange of STI. Scientific journals evolved in the 17th century to replace the

system of exchanging personal letters between scientists, which evolved because of

unacceptable delays in publishing books (Odlyzko, 1995). However, journals are no

longer used for rapid communication, but rather as Òa medium for priority claiming,

quality control and archiving scientific work.Ó (Bennion, 1994). To achieve rapid

communication of STI, different disciplines have adopted various models. Starting in the

1960Õs, ÒLettersÓ journals began to appear in some disciplines to offer more rapid

dissemination of research results, while in other disciplines the pre-print or technical

report emerged as the rapid dissemination vehicle (Vickery, 1999). In computer science,

the technical report is a common unit of exchange. In disciplines such as high-energy

physics, the pre-print culture is well established. Paul Ginsparg, a physicist active in

digital libraries, notes that ÒThe small amount of filtering provided by refereed journals

plays no effective role in our research.Ó (Ginsparg, 1994). While noting that not all

disciplines embrace the pre-print / technical report culture equally, Odlyzko (1995) states

Òit is rare for experts in any mathematical subject to learn of a major new development in

11

their area through a journal publicationÓ and also relates comments by computer scientists

Rob Pike (Òthat in his area journals have become irrelevantÓ) and Joan Feigenbaum (Òif it

didnÕt happen at a conference, it didnÕt happenÓ).

A journal article is often only a fraction of the available technical literature about a

given subject. Theses, dissertations, conference papers, and technical reports are known

as Ògrey literatureÓ and receive varying degrees of peer review. ÒWhite literature,Ó

available through standard publications channels and processes, is often supported by a

larger body of grey literature. The role of the large amount of grey literature and its

relation to the smaller amount of white literature, and the issues associated with

integrating the two have been present since the post-World War II U.S. Government

sponsored research boom (Bennington, 1952; Gray, 1953; Scott, 1953). David Patterson,

co-inventor of the RISC computer chip, noted that in one of his first research projects,

the output was 2 journal articles, 12 conference papers, and 20 technical reports

(Patterson, 1994). If we consider this pyramid of publications (Fig. 2) to be typical, then

a journal article actually functions as an abstract of a larger body of STI.

It is estimated that there are over 100,000 domestic technical reports produced

annually (Esler & Nelson, 1998). The result is that even if there are 20,000 primary

research journals (Bennion, 1994), they do not represent the entirety of STI. These

numbers do not include 1) confidential, secret, proprietary, and otherwise restricted

reports; or 2) non-report STI, such as computer software, data sets, video, geographic

Journal Articles

Conference Papers

Technical Reports

 FIG. 2. Pyramid of publications for a single project/concept.

time

12

data, etc. Indeed, anecdotal evidence suggests that the WWW is not just a rapid transport

mechanism for white and grey literature, but collections of WWW pages are becoming a

new unit of STI exchange as well. Figure 3 shows the Pyramid of Publications described

in Figure 2 resting on a larger body of unpublished STI.

Schatz and Chen (1996) give a summary of the Digital Library Initiative (DLI)

projects focusing on building large digital libraries of non-report STI. However, these

efforts can be summarized as propagating a Òseparate but equalÓ philosophy with regards

to non-report STI. Instead of integrating software, datasets, etc. into the same DL, which

contains the reports, separate DLs are created for the new collection. The researcher is

still left to reconstruct the original information tuple by integrating search results from

various DLs. The DLI2 initiative (Lesk, 1999; Griffin, 1999), a follow-on to the 1994-

1998 DLI, is funding a broader range of DL projects, including a great number with focus

on non-report literature. However, these projects still do not focus on redefining the

output of the STI research process. We consider Òseparate-but-equalÓ DLs to be harmful.

For example, no matter how sophisticated a video DL becomes, the video should never be

de-integrated from the data sets that supplement the video, the software used to process

the data sets, and the report that documents the entire project. The limitations of current

STI exchange mechanisms can be summarized as follows:

Journal Articles

Conference Papers

Technical Reports

 FIG. 3. Pyramid of publications rests on unpublished STI.

time

software raw data notes video /

 images

13

- highly focused on journal articles, despite their decreasing value to researchers

and practitioners in some fields;

- inadequate acquisition of grey literature, the grist of technical exchange; and

- inability to integrate non-publication media, such as datasets, software, and

video.

These limitations are largely side effects of the hard copy distribution paradigm.

As STI exchange moves toward electronic distribution, existing mechanisms should not

merely be automated, but the entire process should be revisited.

2.3 Information Survivability

The longevity of digital information is a concern that may not be obvious at first

glance. While digital information has many advantages over traditional printed media,

such as ease of duplication, transmission and storage, digital information suffers unique

longevity concerns that hard copy does not, including short life spans of digital media

(and their reading devices) and the fluid nature of digital file formats (Rothenberg, 1995;

Lesk, 1997). The Task Force on Archiving of Digital Information (1996) distinguished

between: refreshing, periodically copying the digital information to a new physical media;

and migrating, updating the information to be compatible with a new hardware/software

combination. Refreshing and migrating can be complex issues. The nature of refreshing

necessitates a hardware-oriented approach (perhaps with secondary software assistance).

Software objects cannot directly address issues such as the lifespan of digital media or

availability of hardware systems to interpret and access digital media, but they can

implement a migration strategy in the struggle against changing file formats. An

aggregative software object could allow for the long-term accumulation of converted file

formats. Rather than successive (and possibly lossy) conversion of:

Format1 à Format2 à Format3 à É. à FormatN

14

We should have the option of:

Format1 à Format2

Format1 à Format3

Format1 à É.

Format1 à FormatN

With each intermediate format stored in the same location. This would allow us to

implement the Òthrow away nothingÓ philosophy, without burdening the DL directly

with increasing numbers of formats.

For example, a typical research project at NASA Langley Research Center

produces information tuples: raw data, reduced data, manuscripts, notes, software,

images, video, etc. Normally, only the report part of this information tuple is officially

published and tracked. The report might reference on-line resources, or even include a

CD-ROM, but these items are likely to be lost, degrade, or become obsolete over time.

Some portions such as software, can go into separate archives (i.e., COSMIC Ð the

official NASA software repository) but this leaves the researcher to locate the various

archives, then re-integrate the information tuple by selecting pieces from the different, and

perhaps, incompatible archives. Most often, the software and other items, such as

datasets are simply discarded or effectively lost in informal, short-lived personal archives.

After 10 years, the manuscript is almost surely the only surviving artifact of the

information tuple. The fate typical of various STI data types is depicted in Figure 4.

As an illustration, COSMIC ceased operation in July 1998; its operations were

turned over to NASAÕs technology transfer centers. However, at the time of this writing

there appears to be no operational successor to COSMIC. Unlike their report

counterparts in traditional libraries or even DLs such as LTRS, the software contents of

COSMIC have been unavailable for several years, if not completely lost.

Additional steps can be taken to insure the survivability of the information object.

Data files could be bundled with the application software used to process them, or if

15

common enough, different versions of the application software, with detailed instructions

about the hardware system required to run them, could be a part of the DL. Furthermore,

they could include enough information to guide the future user in selecting (or developing)

the correct hardware emulator.

FIG. 4. STI lost over time.

2.4 Objectives and Design Goals

The objectives of this research are as follows:

1. Develop ÒbucketsÓ Ð a collection of mechanisms and protocols to aggregate,

protect, manage, and mobilize content and basic services.

2. Develop a reference implementation of buckets based on http, CGI and Perl.

3. Evaluate the concept and reference implementation in different application

domains.

The development of buckets is guided by a number of design goals. As suggested

by the SODA model, buckets have unique requirements due to their emphasis on

minimizing dependence on specific DL implementations. The design goals are:

aggregation, intelligence, self-sufficiency, mobility, heterogeneity and archive

independence.

2.4.1 Aggregation

As outlined in the discussion given above, DLs should be shielded from the

transient nature of data file formats and the information object should be allowed to

evolve independently of the system(s) users employ to discover the information object.

Project

manuscript

software

raw data

images

library

ftp site

thrown away

filing cabinent

User New
Project

project archival reuse

16

Furthermore, a trend was noted that DLs were often built around the now obsolete media

boundaries of traditional libraries (Esler & Nelson, 1998): technical reports existed in a

technical report DL, images existed in an image DL, software existed in a software DL. A

thesis of this study is that since all of these objects were created at the same time and

potentially have subtle relationships between them, they should be able to be stored in

the same information object. In NASA DLs there was an information hemorrhaging: a

suite of information objects would be prepared digitally, but since the DLs could only

accept a single information object (report or re-print), the other objects were left to be

archived and distributed informally, if at all.

With decreasing costs of physical storage media, the cost of not saving data sets

becomes more expensive than saving them. Some data, such as time-dependent satellite

data or pilot-in-the-loop flight simulations, cannot be replaced or recreated. Buckets

provide a way to aggregate all the related information objects, which could be useful for

future, possibly unknown uses into a single container object that provides ease of

maintenance. Buckets can also be used to aggregate the successive migrations of an

information object from one hardware/software system to the next.

2.4.2 Intelligence

Yet another design goal of buckets is that they be autonomous and active, not

passive and tied to a server. Buckets should be able to perform and respond to actions on

their own and have them be active participants in their own state and existence. Buckets

do not necessarily have to reveal their intelligence in interaction with users, but rather in

interaction with tools and other buckets. Making information objects intelligent opens the

door for whole new realms of applications. Although some bucket applications are

obvious, such as making information objects computational entities and self-arranging,

most others remain undiscovered.

2.4.3 Self-Sufficiency

For maximum autonomy, the default configuration for buckets is to contain all

their code, data, user and password files, and everything else they need physically inside

17

the buckets. Optimizations exist in which code and password files can be ÒfactoredÓ out

of the buckets, resulting in storage savings and easier management. However, these

savings come at the cost of decreased autonomy and mobility (see below). Given proper

tools, it is expected self-sufficient buckets can be easily managed and the increased storage

overhead is negligible given that storage is ÒcheapÓ.

As for data, buckets can store data physically inside the bucket, or simply store

ÒpointersÓ to data objects that exist outside the bucket. Internal data storage is preferred,

however some data (e.g., database views) make sense to store as dynamic pointers.

Although buckets can store either physical copies or pointers, buckets obviously can

make no guarantees about the long-term survivability of items that lie outside the bucket.

Buckets should provide the mechanisms to implement the internal vs. external data

storage policies for specific applications.

2.4.4 Mobility

Related to self-sufficiency, buckets can be mobile. That is, they can physically

move from place to place since they contain all the code and support files they need.

Furthermore, placing a bucket on a host should require no modifications to the http

server. For technical reports and re-prints, the need for mobility is not obvious, beyond

the role that it plays in assisting information refreshing. However, an application

proposed by the Air Force illustrates the power of mobility. In their plan, buckets are

used to represent people and the buckets store supplemental human resources (HR)

information (papers published, personnel reviews, CV materials, etc.) As people move

between Air Force installations, their HR bucket moves with them, Òplugging-intoÓ the

HR system at the host installation.

Mobility can be used in other situations where we wish to move the buckets in

response to a particular workflow model. Rather than requiring the bucket to be anchored

in a particular spot, it would be possible for a bucket to travel from place to place, and be

local to the system that it is sampling data from. After collecting data at its various

18

stops, it could then be moved to a location where it is visible to a DL, and be indexed and

found by users.

2.4.5 Heterogeneity

A significant requirement for buckets is that they all do not have to look or act the

same. It is possible for different installations to locally modify the buckets created at that

site to reflect their specific publishing policy or take advantage of known characteristics

of the data they store. Similarly, it is possible for buckets to evolve differently over time,

with new methods being added, deleted or overridden as appropriate. Furthermore, it

should be possible to publish buckets with entirely different structure and functionality,

based on what discipline the buckets support. Intuitively, an earth science bucket and a

biomedical engineering bucket should at least have the option of looking and acting

differently. However, buckets should retain enough basic methods so their version and

features can be dynamically discovered.

2.4.6 Archive Independence

To the extent reasonable, buckets should work with any type of archive and/or

DL. Similarly, they should not break any archive or DL. In fact, archives and DLs are

not required for bucket operation. It should be possible for buckets to be indexed in any

number of DLs. Archives, DLs, search engines, etc. are not intrinsic to the operation of

buckets Ð they are add on services that can be used in management and resource discovery

and should be completely decoupled from the buckets themselves.

19

CHAPTER THREE

BUCKET ARCHITECTURE

3.1 Overview

A bucket is a storage unit that contains data and metadata, as well as the methods

for accessing both. It is difficult to overstress the importance of the aggregation design

goal. In our experience with other NASA DLs, data was often partitioned by its semantic

or syntactic type: metadata in one location, PostScript files in another location, PDF files

in still another location, etc. Over time, different forms of metadata were introduced for

different purposes, the number of available file formats increased, the services defined on

the data increased, new information types (software, multimedia) were introduced, the

logging of actions performed on the objects became more difficult. The result of a report

being Òin the DLÓ eventually represented so much DL jetsam - bits and pieces physically

and logically strewn across the system. We responded to this situation with extreme

aggregation.

The first focus of the aggregation was for the various data types. Based on

experience gained while designing, implementing and maintaining LTRS and NTRS, we

initially decided on a two-level structure within buckets:

- buckets contain 0 or more packages

- packages contain 0 or more elements

Actual data objects are stored as elements, and elements are grouped together in

packages within a bucket. In LTRS and NTRS, a two-level architecture was sufficient for

most applications, so this two-level architecture was retained as a simplifying assumption

during bucket implementation. Future work will implement the semantics for describing

arbitrarily complex, multi-level data objects.

20

An element can be a ÒpointerÓ to another object: another bucket, or any other

arbitrary network object. By having an element ÒpointÓ to other buckets, buckets can

logically contain other buckets. Although buckets provide the mechanism for both

internal and external storage, buckets have less control over elements that lie physically

outside the bucket. However, it is left as a policy decision to the user as to the

appropriateness of including pointers in an archival unit such as a bucket. Buckets have

no predefined size limitation, either in terms of storage capacity, or in terms of number of

packages or elements. Buckets can use a CNRI handle, a URN implementation, for a

globally unique id. Buckets are accessed through 1 or more URLs. For an example of

how a single bucket can be accessed through multiple URLs, consider two hosts that

share a file system:

http://host1.foo.edu/bar/bucket-27/

http://host2.foo.edu/bar/bucket-27/

Both of these URLs point to the same bucket, even though they are accessed

through different hosts. Also, consider a host that runs multiple http servers:

http://host1.foo.edu/bar/bucket-27/

http://host1.foo.edu:8080/bucket-27/

If the http server running on port 8080 defines its document root to be the

directory ÒbarÓ, then the two URLs point to the same bucket.

Elements and packages have no predefined semantics associated with them.

Authors can model whatever application domain they desire using the basic structures of

packages and elements. One possible model for bucket, package, and element definition is

based on NASA DL experiences. In Figure 4, packages represent semantic types

(manuscript, software, test data, etc.) and elements represent syntactic representations of

21

the packages (a .ps version, .pdf version, .dvi version, etc.). Other bucket models

using elements and packages are possible. For example, we have used buckets for entire

research projects (Fig. 6) and university classes (Fig. 7) as well as for STI publications.

Though the display of the two buckets is different, the two-level architecture of packages

and elements is evident.

Buckets have the capability of implementing different policies as well: one site

might allow authors to modify the buckets after publishing, and another site might have

buckets be ÒfrozenÓ upon publication. Still another site might define a portion of the

bucket to receive annotations, review, or contributions from the users, while keeping

another portion of the bucket frozen, or only changeable by authors or administrators.

Buckets provide mechanism, not policy.

FIG. 5. Model of a typical NASA STI bucket.

Access MethodsCNRI Handle
(unique id)

 Terms and Conditions

Metadata (RFC 1807, Dublin Core)

Manuscript .ps .pdf .tex .doc

Software .tar .c .java

images .gif .jpeg

data sets .xls .tar

. . .

Figure 8: A Typical Bucket Architecture

Packages
inside the
bucket

Elements inside
the package

22

FIG. 6. Sample project bucket.

Another focus of aggregation was including the metadata with data. In previous

experiences, we found that metadata tended to ÒdriftÓ over time, becoming decoupled

from the data it described or ÒlockedÓ in specific DL systems and hard to extract or share

with other systems. For some information types such as reports, regenerating lost

metadata is possible either automatically or by inspection. For other information types

such as experimental data, the metadata cannot be recovered from the data. Once the

metadata is lost, the data itself becomes useless. Also, we did not want to take a

proscriptive stance on metadata. Although the bucket itself has to ultimately chose one

23

metadata format as canonical for storing and modifying its internal structure information,

buckets needed to be able to accommodate multiple metadata formats. Buckets do this by

storing metadata in a reserved package and using methods for reading and uploading new

metadata formats as elements in the metadata package. As a result, buckets can

accommodate any number of past, present or future metadata formats.

FIG. 7. Sample course bucket.

The final aggregation focus was on the services defined on buckets and the results

of those services. The default state is for everything the bucket needs to display,

disseminate, and manage its contents is contained within the buckets. This includes the

24

source code for all the methods defined on the bucket, the user ids and passwords, the

access control lists, the logs of actions taken on the bucket, Multipurpose Internet Mail

Extensions (MIME) (Borenstein & Freed, 1993) definitions and all other supporting

technologies necessary for the bucket to function. The self-sufficiency and mobility

design goals dictate that a bucket cannot make many assumptions about the environment

that it will reside in and should require no server modifications to function.

3.2 Implementation

The buckets described in this chapter are version 1.6. Appendix A lists the full

bucket history. Buckets are currently written in Perl 5 and use http as the transport

protocol. However, buckets can be written in any language as long as the bucket API is

preserved. Buckets were originally deployed in the NCSTRL+ project (Nelson, Maly,

Shen, & Zubair, 1998), which demonstrated a modified version of the Dienst protocol

(Lagoze, Shaw, Davis, & Krafft, 1995). Owing to their Dienst-related heritage, bucket

metadata is stored in RFC-1807 format (Lasher & Cohen, 1995), with package and

element information stored in NCSTRL+ defined optional and repeatable fields. Although

buckets use RFC-1807 as their native format, they can contain and serve any metadata

type. Dienst has all of a document's files gathered into a single Unix directory. A bucket

follows the same model and has all relevant files collected together using directories from

file system semantics. The bucket is accessible through a CGI script that enforces terms

and conditions, and negotiates presentation to the WWW client.

Aside from Perl 5, http, and CGI, buckets make no assumptions about the

environment in which they will run. Mobility is one of the design goals of buckets, and a

corollary of that is that buckets should not require changes in a ÒreasonableÓ http server

setup; where ÒreasonableÓ is defined to be allowance of the index.cgi convention.

Once these assumptions have been met, buckets by default take care of everything

themselves with no server intervention, including MIME typing, terms and conditions,

and support libraries. Although bucket development was conducted under Solaris (Unix),

buckets have been tested on a variety of system configurations (Table 1).

25

TABLE 1. System configurations used for bucket testing.

Architecture Operating System Perl http server

Sparc Solaris 2.7 5.005_03 Apache 1.3.9

Sparc Solaris 2.7 5.005_03 NCSA httpd 1.5.2

Sparc Red Hat 6.0 (Linux

2.2.5-15)

5.005_03 Apache 1.3.6

Intel x86 Windows NT 4.0

(1381 / SP 5)

Active Perl

5.005_03

Apache 1.3.12

Intel x86 Mandrake Linux 6.2 5.005_03 Apache 1.3.6

MIPS R10000 IRIX 6.5 5.004_04 Apache 1.3.4

RS/6000 AIX 4.2 5.002 Apache 1.3.12

PowerPC 604 Linux 2.0.33

(MkLinux)

5.004_01 Apache 1.2.6

The biggest difficulty in mobility across multiple platforms is locating the Perl

interpreter. Buckets use the Unix-style Ò#!Ó construct to specify which interpreter

should be used to process the script. For example, the first line in index.cgi script in

bucket version 1.6 is:

#!/usr/local/bin/perl

Which explicitly specifies where Perl is expected to be found. On Unix systems,

this is generally not a problem, since any of the following values are generally at least

symbolic links to the canonical location of the Perl interpreter:

- /usr/local/bin/perl

- /usr/bin/perl

- /bin/perl

26

However, for Windows NT systems, Perl generally exists in a different location

altogether, and the default Unix values are less likely to work. It is possible on the

Windows NT version of Apache to bind the Perl interpreter to all scripts ending in .cgi,

but for testing on our Windows NT system, the first line of the index.cgi script was

changed to be:

#!\Perl\bin\perl.exe

For greater Unix portability there is a standard trick to gain slightly more

portability. It is possible to replace the first line of the index.cgi script to contain:

#!/bin/sh -- # -*- perl -*-
eval Õexec perl ÐS $0Õ
if 0;

This invokes the Bourne shell and determines where Perl exists on the host by

using the first value it finds in the $PATH environment variable. However, since this

depends on the Bourne shell, it is even less likely to work on Windows NT systems than

the current #! value. A general purpose bootstrapping procedure to specify the Perl

interpreter has not been found.

3.2.1 Bucket Methods

Communication with buckets occurs through a series of bucket messages defined

by the bucket API. The list of defined bucket methods is given in Table 2, and the

bucketÕs detailed API is in Appendix B. Note that these are methods defined for our

generic, all-purpose buckets. It is expected that local sites will add, delete and override

methods to customize bucket structure details to their own requirements. It is important

to note that regular users are not expected to directly invoke methods Ð the users require

no special knowledge of buckets. All the user needs is the initial URL pointing to the

bucket, and then the applicable methods for accessing its contents are automatically built

into the bucketÕs HTML output. The other creation and management-oriented methods

are expected to be accessed by a variety of bucket tools.

27

TABLE 2. Bucket API.

Method Description

add_element Adds an element to a package

add_method Adds a method to the bucket

add_package Adds a package to the bucket

add_principal Adds a user id to the bucket

add_tc Adds a T&C file to the bucket

delete_bucket Deletes the entire bucket

delete_element Deletes an element from a package

delete_log Deletes a log file from the bucket

delete_method Deletes a method from the bucket

delete_package Deletes a package from the bucket

delete_principal Deletes a user id from the bucket

delete_tc Deletes a T&C file from the bucket

display Displays and disseminates bucket contents

get_log Retrieves a log file from the bucket

get_preference Retrieves a preference(s) from the bucket

get_state Retrieves a state(s) from the bucket

id Displays the bucketÕs unique id

lint Checks the buckets internal consistency

list_logs Lists all the log files in the bucket

list_methods Lists all the methods in the bucket

list_principals Lists all the user ids in the bucket

list_source List the method source

list_tc Lists all the T&C files in the bucket

metadata Displays the metadata for the bucket

pack Returns a Òbucket-streamÓ

28

set_metadata Uploads a metadata file to the bucket

set_preference Changes a bucket preference

set_state Changes a bucket state variable

set_version Changes the version of the bucket

unpack Overlays a Òbucket-streamÓ into the bucket

version Displays the version of the bucket

FIG. 8. Output of the ÒdisplayÓ method.

29

Our reference implementation of buckets implements the bucket API using http

encoding of messages. Buckets appear as ordinary URLs and casual users should not

realize that they are not interacting with a typical web site. If no method is invoked via

URL arguments, the ÒdisplayÓ method is assumed by default. This generates a human-

readable display of the bucketÕs contents. For example, a bucket version of a NACA

Technical Note can be reached at:

http://www.cs.odu.edu/~nelso_m/naca-tn-2509/

which is the same as:

http://www.cs.odu.edu/~nelso_m/naca-tn-2509/
?method=display

Both of which will produce the output in figure 8. These URLs could be reached

through either a searching or browsing function within a DL, or they could be typed in

directly from above Ð buckets make no assumptions on how they were discovered. From

the human readable interface the ÒdisplayÓ method generates, if users wish to retrieve the

PDF file, they click on the PDF link that was automatically generated:

http://www.cs.odu.edu/~nelso_m/naca-tn-2509/
?method=display&pkg_name=report.pkg
&element_name=naca-tn-2509.pdf

which would cause the WWW browser to launch the PDF reader application or plug-in.

Similarly, if the users wished to display the scanned pages, selecting the automatically

created link would send the following arguments to the ÒdisplayÓ method:

http://www.cs.odu.edu/~nelso_m/naca-tn-2509/
?method=display&pkg_name=report.pkg
&element_name=report.scan

30

which would produce the output seen in figure 9. To the casual observer, the bucket API

is transparent. However, if individual users or harvesting robots know a particular URL

is actually a bucket, they can exploit this knowledge. For example, to extract the

metadata in default (RFC-1807) format, the URL would be:

http://www.cs.odu.edu/~nelso_m/naca-tn-2509/
?method=metadata

which would return the metadata in a structured format, suitable for inclusion in an index

being automatically built by a DL. If a user or agent wishes to determine that nature of a

bucket, a number of methods are available. For example, to determine the bucketÕs

version, the message is:

http://www.cs.odu.edu/~nelso_m/naca-tn-2509/
?method=version

And to see what methods are defined on a bucket:

http://www.cs.odu.edu/~nelso_m/naca-tn-2509/
?method=list_methods

However, if a harvester is not bucket-aware, it can still ÒcrawlÓ or ÒspiderÓ the

bucket URLs as normal URLs, extracting information from the HTML human-readable

interface generated by the ÒdisplayÓ method (assuming the ÒdisplayÓ method is not

restricted by T&C). Buckets offer many expressive options to the users or services that

are bucket-aware, but are transparent to those who are not bucket-aware.

3.2.2 File Structure

Buckets take advantage of the package/element construct for their internal configuration.

In addition to the user data entered as packages and elements, the bucket keeps its own

files as elements in certain reserved packages. Thus, methods such as Òadd_elementÓ,

Òdelete_elementÓ and so forth can be used to update the source code for the bucket,

update the password files, etc. Table 3 lists the predefined packages and some of the

31

elements they contain. By convention, these packages begin with an underscore (Ò_Ó)

character. Figure 10 provides a model representation of the structure of a typical bucket,

with internal packages and elements on the left and user-supplied data packages on the

right.

FIG. 9. Thumbnails in the ÒdisplayÓ method.

32

TABLE 3. Reserved packages.

Package Elements Within the Package

_http.pkg cgi-lib.pl Ð Steven BrennerÕs CGI library
encoding.e Ð a list of MIME encoding types
mime.e Ð a list of MIME types

_log.pkg access.log Ð messages received by the bucket

_md.pkg [handle].bib Ð a RFC-1807 bibliographic file
 other metadata formats can be stored here, but
 the .bib file is canonical

_methods.pkg 1 file per public method

_state.pkg 1 file per stored state variable

_tc.pkg 1 file per .tc (terms and condition) file
password file
.htaccess file

FIG. 10. Bucket structure.

Bucket

index.cgi

_methods.pkg _http.pkg _log.pkg

_tc.pkg_state.pkg_md.pkg

report.pkg apendix.pkg

software.pkg testdata.pkg

source files
for method

http
dependency
files

logs

terms and
conditions

metadata bucket state

default bucket packages sample bucket payload

33

3.2.3 Terms and Conditions

Bucket terms and conditions are currently implemented using http and CGI

facilities. Although it is possible to access a bucket from the command line, this would

effectively bypass any security measures implemented by the bucket. Buckets hosted on

shared machines must use file system protections to prevent users from bypassing the

bucket API. Building from the CGI facilities, buckets implement simple access control

lists (ACLs) that restrict access based on username/password pairs, Internet Protocol (IP)

hostnames, and IP addresses. It is also possible to apply these restrictions to entire

methods, entire packages, or package/element pairs. The first example given below

assumes the buckets are entirely self-contained and nothing has been factored out. For

collection-wide T&C, factoring out the often repetitive T&C files as well as the user ids

and passwords allows for easier maintenance. However, the bucket operation remains the

same, only the location of where the bucket looks (internally vs. a shared location) is

changed. Creation of user, hostname or address groups is supported as well. However,

the bucket does not directly process these groups, it first flattens the groups to a list of

values, and then they are processed normally. Factoring and group support are

orthogonal and can be combined.

The ACLs are stored as elements (with a .tc extender) in the _tc.pkg package.

The filename for the .tc file specifies which method it protects. For example, to protect

the entire method Òlist_tcÓ, the file _tc.pkg/list_tc.tc could contain the following

entries, or ÒdirectivesÓ:

user:nelson
user:maly
host:.*.larc.nasa.gov
host:.*.cs.odu.edu

Which would require the http-based user authentication for either ÒnelsonÓ or

ÒmalyÓ to be given, and for the originating computer to have either a .larc.nasa.gov

34

or a .cs.odu.edu IP address. To protect all elements of a package from being

displayed, a _tc.pkg/display.tc file could contain:

addr: 128.155.*
package: data.pkg

This would require access to any of the elements within the package Òdata.pkgÓ to

originate from a machine on the 128.155 subnet. Other packages and elements can be

retrieved from any machine by any user. To restrict who can delete a specific element

from, the file _tc.pkg/delete_element.tc would contain:

user:nelson
package:report.pkg
element:report.pdf
element:report.ps

This would prevent the two specified elements of the report.pkg package

from being deleted by anyone other than the user ÒnelsonÓ. Note that if in the above

example, the user: line was deleted, and no other user:, host: or addr: line was

present, this would have the same effect of preventing anyone from deleting the above

elements. The delete_element.tc file would have to be changed before those

elements could be deleted.

To specify T&C for the entire bucket, an index.tc file is used. An index.tc

file uses the same syntax and can be used in conjunction with method T&C files. If

index.tc and add_package.tc both exist, then calls to Òadd_packageÓ would have

to satisfy both T&C files, with index.tc being enforced first.

For ease of management, it is possible to define groups of users, hostnames and

address. These bucket groups are not implemented with http groups, but rather as text

files with the following syntax:

group1: user1 user2 user3
group2: user2 user4

35

Terms and conditions are enforced using CGI mechanisms. This includes checking

the environment variables REMOTE_HOST, REMOTE_ADDR, and REMOTE_USER.

The CGI environment on the http server automatically sets

REMOTE_HOST and REMOTE_ADDR. REMOTE_USER is set when CGI user

authentication is done. When a bucket method is invoked, before the bucket loads the

appropriate code to execute that method, the bucket checks in the _tc.pkg package to

see if there is a .tc file for the called method. If the .tc file exists, its contents are

read. If host: or addr: lines are present, and if the package and element arguments

passed in are also listed in the .tc file, then REMOTE_HOST and REMOTE_ADDR are

compared with the host: and addr: lines for a match. If a match is not made, an

error message is returned and execution halts. If a match is made, execution continues

with no interruption.

Utilizing the username/password function (i.e., REMOTE_USER) is slightly more

complicated. If the .tc files have a user: line, then current bucket execution is

redirected. That is, if the display method requires REMOTE_USER to be set, then:

http://dlib.cs.odu.edu/bucket/?method=display

is redirected to:

http://dlib.cs.odu.edu/bucket/restricted/?method=display

Every bucket has a /restricted/ redirect capability that invokes the CGI

username / password authentication by means of a .htaccess file in the restricted

directory. The .htaccess file lists the usernames that it will accept. The passwords

are stored encrypted in a separate, Unix-style password file. All of this is kept in the

_tc.pkg package. If the user authenticates to a recognized username, and that

username is one that is required in the .tc file, then execution continues. If not, an error

message is generated and execution halts.

36

To further illustrate the operation of bucket T&C, consider an example where we

wish to restrict all access to a large number of buckets so that only *.cs.odu.edu and

*.larc.nasa.gov machines can access them. Since all the buckets will have the same

T&C profile, we will use both factoring and groups for easier management of the T&C

files in the buckets and the specification. The bucketsÕ preferences (discussed in the next

section) will be changed so they look for their .tc files outside the bucket. The

tc_server preference would be changed from internal to a file system location

such as:

/usr/local/buckets/tc/group-10/

The bucket would look inside this directory, and see the presence of an

index.tc file that would specify T&C for the entire bucket Ð all methods. The

index.tc file would have contents similar to:

host_group: hgroup-10

If the bucketsÕ host_group preference has been changed from internal to:

/usr/local/buckets/tc/

Then the file /usr/local/buckets/tc/host_group would have entries

similar to:

hgroup-1: blearg.larc.nasa.gov lion.cs.odu.edu
hgroup-2: jaguar.cs.odu.edu .*.nasa.gov
É
hgroup-10: .*.larc.nasa.gov .*.cs.odu.edu
É

The bucket preferences and the values in the various .tc files and group files are

all manageable from the Administration Tool (chapter seven). While the T&C mechanism

described above is sufficient for a large number of applications, they are not rich enough

37

for a full array of needs anticipated for NASA DLs. In addition, the terms and conditions

can be defeated if the values of REMOTE_HOST, REMOTE_ADDR, or REMOTE_USER

are forged.

Table 4 lists all the directives that T&C files recognize. The inform: directive,

although present in the T&C file, does not specify access control. Instead, it specifies

who should be informed when an action takes place. If an action is successful, the bucket

generates an email message informing the recipient that the action was successfully

completed. If the action was not successful, the bucket generates an email message

indicating the failure of the action along with an HTML form that will allow the recipient

to reattempt the action. The inform: directive can be used in conjunction with other

directives.

TABLE 4. Directives available in T&C files.

Directive Arguments

user: principal names

group: principal groups

addr: IP address (can be a Perl regular expression)

addr_group: IP address groups

host: IP hostname (can be a Perl regular expression)

host_group: IP hostname groups

package: name of a package in this bucket

element: name of an element in this package (must be used with a package:

directive)

inform: email addresses

38

3.2.4 Internal Bucket Operation

In this section, we examine what happens internally when a CGI-based bucket

receives a message. The details are specific to the current implementation of Perl-based

buckets; other implementations are free to implement the bucket API differently.

A user contacts a http server and specifies the bucket they wish to communicate

with. This can be done by either explicitly naming the index.cgi:

http://foo/bar/bucket/index.cgi

or implicitly:

http://foo/bar/bucket/

The CGI parsing is done with cgi-lib.pl (Brenner, 2000) that is stored inside the

bucket in the _http.pkg package. CGI.pm (Stein, 1998) is not used for two reasons:

1) it is not part of the standard Perl library, so it would have to be carried in the bucket as

well; 2) it did not perform well as well as cgi-lib.pl in command line operation (used

frequently in testing and debugging). The index.cgi script parses the input string to

determine which method the user is requesting. If no method is specified, the display

method is assumed. The index.cgi script then looks in the _tc.pkg package to see

if an index.tc or method.tc file exists (where method is the name of the method

that is being invoked). If either (or both) file(s) exists, the T&C are enforced as described

in the previous section. If the T&C are satisfied, the index.cgi script then performs a

run-time include of the source code of the method. The index.cgi script then calls the

function with the same name as the method invoked, which is assumed to be defined in

the source code included at run-time. This way only the code for the invoked method is

accessed. This procedure also allows for the index.cgi script to be written so that it

makes no assumptions about the methods that are available, allowing methods to be added

and deleted for specific bucket instantiations. This entire process can be encapsulated in

39

this Perl code snippet, where $method is a variable containing the name of the requested

method:

$method_file = "$method_dir/$method.pl";
if (-f $method_file) {

&tc($method); # check tc
if we made it out of &tc, we must be ok...
require "$method_file"; # run-time include
&$method; # calls the method

}else {
method not found in bucket
&unsupported($method);

}

If the ÒdisplayÓ method is called with specific package and element arguments,

then the named file is returned. However, this is not done through ÒnormalÓ http

operations Ð to enforce data hiding, packages have .htaccess files that prevent any

direct access of their elements. The index.cgi script opens the file for reading, sets

the correct MIME type by checking the element _http.pkg/mime.e, and then writes

the file to STDOUT. If the file being returned to the user is an HTML file, the relative

URLs are re-written to access elements within the bucket. This is necessary because of

the inherent conflict between URLs, which are tightly tied with file location, and the

bucketÕs data hiding, which prevents access of specific file locations. If the element being

requested by the ÒdisplayÓ method call is a URL to a location outside of the bucket, the

bucket will log that a ÒdisplayÓ call was made, where the intended location is, and then

issue an http status code 302 (redirect) to the client.

3.2.5 Metadata Extensions

The metadata file in a bucket plays an extremely important role. Not only does it

hold the traditional bibliographic citation material, it also encodes the structure of the

bucketÕs contents. This structure is read and processed when the bucketÕs ÒdisplayÓ

method is called and the bucket reveals its structure in a human readable, HTML format.

40

RFC-1807 is an extensible format. To describe the two-level bucket structure,

two tags have been defined: ÒPACKAGE::Ó and ÒELEMENT::Ó. All previously defined

RFC-1807 tags are also available with the ÒPACKAGEÓ and ÒELEMENTÓ prefix:

ÒPACKAGE-TITLE::Ó, ÒELEMENT-END::Ó, etc. Currently only the values for the

ÒPACKAGE-TITLE::Ó and ÒELEMENT-TITLE::Ó tags are revealed during a ÒdisplayÓ

method call, however this is likely to change in the future. Figure 11 shows the RFC-

1807 metadata for a bucket:

BIB-VERSION:: X-NCSTRL+1.0
ID:: ncstrplus.odu.cs//naca-tn-2509
TITLE:: A self-synchronizing stroboscopic Schlieren system for the study of
unsteady air flows
REPORT:: NACA TN-2509
AUTHOR:: Lawrence, Leslie F
AUTHOR:: Schmidt, Stanley F
AUTHOR:: Looschen, Floyd W
ORGANIZATION:: NACA Ames Aeronautical Laboratory (Moffett Field, Calif.,
United States)
DATE:: October 1951
PAGES:: 31
ABSTRACT:: A self-synchronizing stroboscopic schlieren system developed
for the visualization of unsteady air flows about aerodynamic bodies in
wind tunnels is described. This instrument consist essentially of a
conventional stroboscopic schlieren system modified by the addition of
electronic and optical elements to permit the detailed examination of
phenomena of cyclic nature,but of fluctuating frequency. An additional
feature of the device makes possible the simualtion of continuous slow
motion, at arbitrary chosen rates, of particular flow features.

PACKAGE:: report.pkg
PACKAGE-TITLE:: Report

ELEMENT:: naca-tn-2509.pdf
ELEMENT-TITLE:: PDF version
ELEMENT-END:: naca-tn-2509.pdf

ELEMENT:: report.scan
ELEMENT-TITLE:: Scanned pages
ELEMENT-END:: report.scan

PACKAGE-END:: report.pkg

PACKAGE:: staff.pkg
PACKAGE-TITLE:: For LaRC Staff

ELEMENT:: report.tiffs
ELEMENT-TITLE:: TIFFs
ELEMENT-END:: report.tiffs

ELEMENT:: maintenance.html
ELEMENT-TITLE:: Maintenance page
ELEMENT-END:: maintenance.html

PACKAGE-END:: staff.pkg

END:: ncstrplus.odu.cs//naca-tn-2509

FIG. 11. RFC-1807 metadata.

The values for ÒPACKAGE::Ó, ÒPACKAGE-END::Ó, ÒELEMENT::Ó and

ÒELEMENT-END::Ó correspond to the actual filesystem names inside the bucket. Just

41

as elements can only exist within packages, ÒELEMENTÓ tags and prefixed tags must be

contained within their respective ÒPACKAGE::Ó / ÒPACKAGE-END::Ó tag pairs.

3.3 Discussion

The previous sections describe the ÒnormalÓ operations of a bucket. However, a

bucketÕs operation can be transformed by the setting of bucket preferences. In this

section, we list what is possible through bucket preferences, as well as examining a

number of systems issues with the current bucket implementation.

3.3.1 Bucket Preferences

Bucket preferences can be checked and set through the Òget_preferenceÓ and

Òset_preferenceÓ methods, respectively. Preferences allow individual buckets to tailor

their operation to reflect their unique requirements, but yet retain a standard, public way

of being changed in the future. Table 5 lists the currently defined preferences and gives a

short explanation of their function.

Inspection of Table 5 will reveal that many preferences exist so the method source

code, user names and passwords, and T&C files can all be Òfactored outÓ of the bucket.

The default model is the bucket carries all of this internally, thus allowing for greater

mobility and independence. However, this level of freedom comes at the cost of increased

storage and complexity in managing multiple copies of source code, passwords, etc. So

we provide the mechanism to factor out all the pieces that do not need to be internally

stored in the bucket. However, these need not be permanent decisions Ð a mostly

homogenous collection of buckets can all share from a central store their source code and

other items that have been removed. However, specific buckets that require different

functionality or a higher level of independence can have their preferences changed so they

return to the default model of internal storage for some or all things.

42

TABLE 5. Bucket preferences.

Preference Default

Value

Description

access.log on This is the name of the single default log, and by default

logging is set to ÒonÓ. Logging can be turned off by setting

this value to ÒoffÓ.

addr_group internal By default, the bucket expects to internally store the file

that maps addr_group names to lists of IP addresses.

Filesystem pathnames are other acceptable values.

bcs_server (none) A bucket can choose which Bucket Communication Space

server it communicates with. The current default is just a

sample value, and is likely to be site dependent. URLs are

acceptable values here.

expanding off The bucket display by default lists all elements in all

packages at once. By setting this preference to ÒonÓ, the

elements will not be visible until the package name is

ÒclickedÓ, revealing its contents.

framable off By default, the bucket ÒdisplayÓ method includes JavaScript

to keep the bucket from being ÒtrappedÓ inside a frame.

Setting this preference to ÒonÓ allows buckets to exist inside

frames.

group internal By default, the bucket expects to internally store the file

that maps group names to lists of user names. Filesystem

pathnames are other acceptable values.

host_group internal By default, the bucket expects to internally store the file

that maps host_group names to lists of IP hostnames.

Filesystem pathnames are other acceptable values.

43

maxdata 5000000 This is the default value for maximum file size of an

uploaded file. Any integer value greater than or equal to

zero is acceptable.

method_server internal By default, the bucket expects to find the source code for

methods inside the bucket. Filesystem pathnames are other

acceptable values.

passwd internal By default, the bucket expects to find the password file

(stored in Unix Ò/etc/passwdÓ format) inside the bucket.

Filesystem pathnames are other acceptable values.

sfx_server (none) The location of a Special Effects (SFX) reference linking

server. This value is just a placeholder; the nature of SFX

insures that this needs to be set to a site-specific value.

URLs are acceptable values.

tc_server internal By default, the bucket expects to internally store the T&C

files for the bucket methods. Filesystem pathnames are

other acceptable values.

thumbnail_inc

rement

10 When displaying thumbnails of scanned pages, this

preference determines how many thumbnails to show at a

time. Any integer greater than 1 is an acceptable value.

3.3.2 Systems Issues

There are a number of systems-related issues concerning the current Perl

implementation of buckets, which might not be present in alternate bucket

implementations. These issues include: interaction between buckets and http caching;

http server permissions and file permissions; and resource consumption by buckets.

Because they depend on CGI, client or server http caches should automatically

not store responses to bucket messages. While this can result in lower performance for

44

the user for repeated access to DL objects, given the potentially dynamic nature of

buckets, not caching responses is desirable.

Another common issue in bucket operation is that the owner of the files that make

up the bucket and the user id of http server do not always match. Since it is possible to

change the bucket through bucket methods, the http server needs to be able to add, delete

and modify files that make up the bucket. There are four ways to accomplish this:

- The files that comprise the bucket can be world writable. While this allows

the http server to write to the bucket, it also makes the bucket vulnerable to

anyone with file system access to the bucket. This method would only be

reasonable if the interactive logins on the machine hosting the buckets were

limited to trusted parties.

- The index.cgi script can be setuid, so when it is invoked, it runs as the

owner of the script, not the caller of the script (in this case, the http server).

However, for security purposes on general-purpose machines many system

administrators do not allow setuid programs outside of file partitions used by

the operating system. Furthermore, many operating system kernels have a

potential security flaw via a race condition in invoking setuid scripts, so the

Perl interpreter will not run setuid scripts unless the kernel has been patched

or the scripts have been wrapped with a C program (Wall, Christiansen, &

Schwartz, 1996).

- The http server can be run as a user (or group member) that has write access

to the files in the bucket. However, most http servers on the standard port

(80) are run as ÒnobodyÓ or some other account with minimal privileges and

no interactive login. However, it is possible to run a http server on a non-

standard port that is run as the owner of the files in the bucket. This will

work, but it does leave open the possibility that if attackers were to

compromise the http server, they could gain access to a privileged account and

not a limited one such as ÒnobodyÓ.

45

- Current versions of Apache, a popular free-source http server, have a Òsetuid

moduleÓ. This allows the installer of apache to decide if all CGI programs

should run not as the same owner of the http server, but as the owner of the

CGI file. This is an elegant, general solution if a site is running an http server

with this capability.

Note that buckets make no assumptions how the problem of http user id and

bucket file user id is solved Ð only that it is solved. If an http server does not have write

permission to a bucketÕs files, attempts to update the bucket will fail. Assuming file

system permissions permit, read attempts will continue to function normally.

The current implementation of buckets should still be considered research

prototypes. As such, they consume storage resources more greedily than a stable,

production version would. Bucket version 1.6 currently requires 68 inodes and 144

kilobytes storage for an ÒemptyÓ bucket. Inodes are used by the Unix filesystem to store

information on individual files and directories. Inodes are finite, but additional inodes can

be allocated by a systems administrator. The inode and kilobyte requirements of the

current implementation are a non-trivial overhead imposed by the buckets. However,

there are other factors to consider:

- These are research prototypes, and as such are ÒwastefulÓ in the name of

convenience. The source code has full documentation and other features not

required for use in a non-development setting. Many of the inodes are

consumed to store simple preferences (e.g., ÒonÓ or ÒinternalÓ) where in a

production system these could be compressed into a single file or data-

structure. Although such optimization has not been vigorously pursued (see

chapter six for optimization performed for the UPS project), it is anticipated

that 50% of the inodes and 30% of the kilobytes required could be reduced.

- Furthermore, the storage requirement is small when compared with the large

aggregations of data that they are designed to hold. For example, in the

46

NACATRS digital library, the average storage requirement per scanned page is

approximately 80KB (Nelson, 1999). Thus, the KB required for a bucket is

less than two scanned pages. 144KB should not be an issue when using

buckets to store 100 scanned page reports, potentially with large supporting

data sets or software.

- Storage is cheap and getting cheaper. Lesk (1997) reports that storage is about

4.5 MB / US $1.0. A quick glance through a current Computer Shopper (a

popular computer hardware mail order retailer) reveals an average of about 20-

25 MB / US $1.0, which fits the profile of storage capacity doubling roughly

every 1.5 years. The exact numbers are not as important as the trend: with

each refresh or migration, the bucket storage overhead problem will decrease

relative to the amount of storage available at a fixed price.

- For DL applications where buckets are likely to be largely homogeneous,

factoring of source code, T&C, and authentication information is available to

reduce the inode and kilobyte requirements. For example, factoring out just

the method source code of a version 1.6 bucket can save 31 inodes and 67

kilobytes.

So while it is true that buckets do impose additional storage requirements, it is felt

that the small additional cost is more than offset by the additional capabilities that

buckets provide.

47

CHAPTER FOUR

DUMB ARCHIVES

4.1 Overview

Buckets are the smart objects in the Smart Object, Dumb Archive DL model. To

complement the buckets, dumb archives exist primarily to aid in the discovery and group

management of buckets. It is possible to use buckets in other DL models, but SODA

provides the most striking demonstration of the shift in responsibilities.

4.1.1 The SODA DL Model

We present a model that defines DLs as composed of three strata (Fig. 12):

- digital library services - the "user" functionality and interface: searching,

browsing, usage analysis, citation analysis, selective dissemination of

information (SDI), etc.

- archive - managed sets of digital objects. DLs can poll archives to learn of

newly published digital objects, for example.

- digital object - the stored and trafficked digital content. These can be simple

files (e.g., PDF or PS files), or more sophisticated objects such as buckets.

DLs are built by Digital Library Service Providers (DLSPs) that:

- identify a user group

- identify archives holding buckets of interest and individual bucket owners

- negotiate terms and conditions with publishing organizations (archive and

individual bucket owners)

- create indices of appropriate subsets through extracting bucket metadata

- create DL services such as search, browse, and reference linking

- create user interaction services such as authentication and billing

48

In most DLs, the digital library services (DLS) and the archive functionality are

tightly coupled. A digital object is placed in an archive, and this placement uniquely

determines in which DL it appears. We believe that if there is not a 1-1 mapping between

archives and DLs, but rather a N-M mapping, the capacity for interoperability is greatly

advanced. A DL can draw from many archives, and likewise, an archive can contribute its

contents to many DLs.

FIG. 12. The three strata of DLs

However, since we can no longer be sure which DL will be used for the discovery

and presentation of an object, it is necessary to evolve the notion of the object and to

imbue it with greater functionality and responsibility. DL objects should be self-

sufficient, intelligent, and aggregative and capable of enforcing their own terms and

conditions, negotiating access, and displaying their contents.

 Much of the traditional functionality associated with archives (terms and

conditions, content display, etc.) has been Òpushed downÓ into the objects, making the

objects ÒsmarterÓ and the archives ÒdumberÓ. To demonstrate a SODA DL, a reference

Digital Library
Services

Archive 1 Archive 2 Archive N. . .

Digital
Objects
in Archives

Library Users

Digital Library
Service Providers

Publishers

Digital
Objects
out of Archives

49

implementation, NCSTRL+ (fully described in Chapter Six), has been constructed which

implements each of the 3 strata listed above using the Dienst protocol and http services.

The DLSs are provided by using the basic core of Dienst for searching, browsing and

similar services. The archive functionality was originally implemented using a modified

version of Dienst, because a bucket-based archive system was not originally available.

The observation that motivates the SODA model for DLs is that digital objects are

more important than the archives that hold them. Many DL systems and protocols are

reaching a point where DL interoperability and object mobility are hindered by the

complexity of the archives that hold the objects. The goal of the current work is to

increase the responsibilities of objects, and decrease the responsibilities of archives. If

digital objects themselves handle presentation, terms and conditions and their own data

management, it will be easier to achieve interoperability between heterogeneous DLs as

well as increase object mobility and longevity. As a consequence, more DLSPs should be

encouraged to build digital libraries for various user communities.

4.1.2 Archive Design Space

Archives exist primarily to assist DLs in locating objects -- they are generally not

for direct user access. It appears that many digital libraries and their associated access

protocols (e.g., Dienst and the Repository Access Protocol (RAP) (Lagoze & Ely, 1995))

have become unnecessarily complex. For example, the Dienst protocol contains a built-in

document object model, and this limits its applicability in different domains and makes it

more difficult to transition to evolving document object models. It is the archived objects,

not archives, that should be responsible for the enforcement of terms and conditions,

negotiation and presentation of content, etc. Although it is expected that some archive

implementations will retain portions of the above functionality Ð indeed, SOSA (Smart

Objects, Smart Archives) may become the most desirable DL model Ða Òdumb archiveÓ

model is used here to illustrate the full application of smart objects (buckets). When

archives become ÒsmartÓ again, it will with other functionalities, not duplication of bucket

50

functionality. Using this terminology, Table 6 illustrates how the archive design space

partitions.

TABLE 6. The archive design space.

Smart Archives Dumb Archives

Smart Objects SOSA: Smart Objects, Smart

Archives

DL Example: none known

SODA: Smart Objects, Dumb

Archives

DL Example: NCSTRL+

Dumb Objects DOSA: Dumb Objects, Smart

Archives

DL Example: NCSTRL

DODA: Dumb Objects, Dumb

Archives

DL Example: any anonymous

FTP server with .ps.Z files

4.1.3 Publishing in the SODA Model

Separating the functionality of the archive from that of the DLS allows for greater

interoperability and federation of DLs. The archive's purpose is to provide DLs the

location of buckets (the DLs can poll the buckets themselves for their metadata), and the

DLs build their own indexes. And if a bucket does not ÒwantÓ to share its metadata (or

contents) with certain DLs or users, its terms and conditions will prevent this from

occurring. For example, it is expected that the NASA digital publishing model will begin

with technical publications, after passing through their respective internal approval

processes, to be placed in a NASA archive. The NASA DL (which is the set of the

NASA buckets, the NASA archive(s), the NASA DLS, and the user communities at each

level) would poll this archive to learn the location of buckets published within the last

week. The NASA DL could then contact those buckets, requesting their metadata. Other

DLs could index NASA holdings in a similar way: polling the NASA archive and

contacting the appropriate buckets. The buckets would still be stored at NASA, but they

could be indexed by any number of DLs, each with the possibility for novel and unique

51

methods for searching or browsing. Or perhaps the DL collects all the metadata, then

performs additional filtering to determine applicability for inclusion into their DL. In

addition to an archive's holdings being represented in many DLs, a DL could contain the

holdings of many archives. If all digitally available publications are viewed as a universal

corpus, then this corpus could be represented in N archives and M DLs, with each DL

customized in function and holdings to the needs of its user base. Figure 13 illustrates the

SODA publishing model.

FIG. 13. The SODA publishing model.

4.2 Implementation

A few simple prototypes of a DA were built as standalone services, but

eventually the decision was made to extend an existing bucket with new methods so it

could function as the DA. Not only did this allow for rapid development of the DA, but

it also showcases the flexibility in modifying buckets for different purposes. It should

also be noted that although DA was created to keep track of buckets, there is nothing in

its implementation that requires the objects it tracks to be buckets. For example, it would

be possible to use DA for an archive of PDF files.

. . .
. . .

NASA Archive CoRRIEEE Archive

User Population

NASA DL Avionics DL NCSTRL

All Known
Buckets
(in archives
and out)

Archives
Managing
Buckets

DLs Building
FromArchives
and Buckets

52

4.2.1 Implemented Methods

A goal of the DA was to be very simple, performing only set management

routines. As such, only five new methods are defined. Table 7 highlights those methods,

and they are explained in detail in Appendix C.

TABLE 7. DA API.

Method Description

da_put insert a data object into the archive

da_delete remove a data object from the archive

da_list display the holdings of the archive

da_info display metadata about the archive

da_get redirects to the objectÕs URL or URN

The DA does not disable any of the currently defined bucket methods. Some of

the methods may be unnecessary, but they were left in they were left in for

completeness. For example, end users are not meant to interact directly with DAs; DAs

exist to aid in the construction of DLs. However, the ÒdisplayÓ method was left in the

DA because: 1) a user might ÒstumbleÓ across a DA, and it should be able to generate a

human readable display; and 2) an archive might have need to store human consumable

information in regular packages and elements Ð for example links to all the DLs that

harvest from the archive. It might be advantageous for DAÕs to have their standard

methods overridden with implementations tailored to archive application. However, a

DAÕs main traffic is expected to remain DLs calling the various da_* methods.

4.2.2 Changes From a Regular Bucket

The five da_* methods are stored as regular methods in the standard

_methods.pkg package. However, DAs also have a DA-specific package,

holdings.pkg, which contains library source files as well as the databases generated to

store the objects in the DA. A tool for duplicating a DAÕs holdings could simply retrieve

53

(modulo the correct T&C) the known elements from this package to get a ÒcopyÓ of the

DAÕs contents.

Similarly, a regular bucket could be changed into a DA through the ÒpackÓ /

ÒunpackÓ methods to extract and replicate the contents of the holdings.pkg package

and the five DA methods. Furthermore, if desirable for a specific application, a bucket

could serve Òdouble dutyÓ Ð responding to da_* methods from DLs, and all the while

serving ÒregularÓ data contents to users interacting with the bucket through the normal

bucket methods.

4.3 Discussion

Even for the limited goals of a dumb archive, the current implementation only

scratches the surface of the work that could be done. In this section, some of the systems

issues of DA implementation are discussed, and an outline is given on how other archive

protocols could be implemented using DA.

4.3.1 DA Examples

Although interaction with a DA should occur through a software tool interface, we

can examine the methods used to populate and interact with the DA. Consider an

installed DA:

http://dlib.cs.odu.edu/da/

This will appear as a regular bucket to someone that goes directly to the above

URL. If it is known that the URL is a DA, then the items registered with the archive can

be listed with:

http://dlib.cs.odu.edu/da/?method=da_list

The above URL will produce a list of ids and URLs for all items registered with

the archive, or a null list if nothing is registered. Items can be placed in the archive:

54

http://dlib.cs.odu.edu/da/?method=da_put&id=report1
&url=http:%2f%2foo.edu%2fr1&adate=19991220
&pdate=19940429&subject=cs

Where ÒadateÓ and ÒpdateÓ are accession date and publication date, respectively,

and are in the format YYYYMMDD. ÒsubjectÓ is a string describing an arbitrary subject

classification system, and ÒurlÓ is an optional encoded URL that maps to the id. If a

URN implementation or other id scheme is not used, it is possible to use URL values in

the ÒidÓ field and not use the ÒurlÓ argument. Figure 14 shows the URLs used to

populate a small DA, and figures 15, 16, and 17 show the results of calls to Òda_listÓ on

that archive with various arguments.

FIG. 14. Population of the DA.

http://res-ups.cs.odu.edu/~nelso_m/da-1.01/?method=da_put&id=test1
&adate=20000214&subject=aero&url=http:%2f%2ffoo.edu%2freport1

http://res-ups.cs.odu.edu/~nelso_m/da-1.01/?method=da_put&id=test2
&adate=19951225&subject=aero&url=http:%2f%2ffoo.edu%2freport2

http://res-ups.cs.odu.edu/~nelso_m/da-1.01/?method=da_put&id=test3
&adate=19951225&subject=cs&url=http:%2f%2ffoo.edu%2freport3

http://res-ups.cs.odu.edu/~nelso_m/da-1.01/?method=da_put&id=test4
&adate=19930101&subject=cs&url=http:%2f%2ffoo.edu%2freport4

http://res-ups.cs.odu.edu/~nelso_m/da-1.01/?method=da_put&id=test5
&adate=19991111&subject=phys&url=http:%2f%2ffoo.edu%2freport5

http://res-ups.cs.odu.edu/~nelso_m/da-1.01/?method=da_put&id=test6
&adate=19991111&subject=phys&pdate=20000101&url=http:%2f%2ffoo.edu%2freport6

http://res-ups.cs.odu.edu/~nelso_m/da-1.01/?method=da_put&id=test7
&adate=19991111&subject=phys&pdate=19991229&url=http:%2f%2ffoo.edu%2freport7

55

FIG. 15. DA query (?method=da_put&adate=<20000101).

FIG. 16. DA query (?method=da_put&adate=19940101-20000101&subject=cs).

56

FIG. 17. DA query (?method=da_put&subject=phys).

4.3.2 DBM Implementation Notes

At first glance, it is tempting to implement the DA functionality using the package

and element constructs of the bucket. Packages could be defined for each of Òda_putÓ

arguments, and an element with recordÕs id in those packages would contain the values for

those arguments. However, as discovered during the UPS implementation (detailed in

Chapter Six), the Solaris operating system will allow only 32,767 inodes within a single

directory (Sun Microsystems, 1999). The current bucket implementation would have

scalability difficulties with archives containing more than 32,767 records. To alleviate

this problem, a different internal data structure was used for the DA functionality instead

of the package / element semantics.

The internal data structures used by DA are implemented with variants of the

Berkeley Database Management (DBM) library (Olson, Bostic & Seltzer, 1999). An

57

index is built for each the possible arguments to Òda_putÓ: ÒidÓ, ÒurlÓ, ÒadateÓ, ÒpdateÓ,

ÒsubjectÓ, and ÒmetadataÓ (see Appendix C for a detailed description). DA attempts to

use the Gnu version, GDBM, but this library is not always available on standard Unix

distributions. If GDBM is not available, it will use the NDBM version, which is

available on all systems.

GDBM is preferable to NDBM (and the other standard versions, SDBM and

ODBM) because the GDBM does not have the limitation of the others of the key + hash

for an entry having a total size of 1024 bytes. As such, if GDBM is not available on the

system running DA, typical values for ÒmetadataÓ will exceed 1024 bytes and the

Òda_putÓ will not be successful.

The DBM libraries provide a convenient and lightweight database mechanism for

the DA, but it does come at a cost to the bucket. Whereas ÒnormalÓ buckets are mobile

and can move from server to server, a DA has mobility only within homogeneous

architectures. DBM files are binary and differ for various machine architectures.

Furthermore, DBM variants are not interchangeable, so if a DA began with GDBM, it

could not automatically read the data files using NDBM. However, given the permanent

nature of archives, for most applications, non-mobile archives will not be a problem. Not

only is the DA an example of a modified bucket, but it is also an example of how

specialization impacts the general bucket requirements.

4.3.3 Open Archives Initiative Dienst Subset Mapping

The currently evolving Open Archives initiative (OAi) aims at making the

technology available for information providers to open up their archives for digital library

service providers to harvest their contents, apply their value-added processing, and

present them to their targeted customer base (Van de Sompel & Lagoze, 2000). The OAi

is a DODA DL model, with sophisticated user services expected to be built from the

harvesting of multiple OAi-compliant archives. While previous attempts within the DL

community at defining common functionality for archives have generated Òlimited

consensusÓ (Scherlis, 1996), the OAi has bounded archive expectations by focusing on

58

what is achievable in the short term. The OAi has defined a small subset of the popular

Dienst protocol, known as the ÒOpen Archives Dienst SubsetÓ (Davis, Fielding, Lagoze,

& Marisa, 2000), which has the sole purpose of aiding service providers in harvesting

archives.

The OAi is an evolving protocol, with version 2 expected in December 2000.

Once the OAi protocol has stabilized, it is anticipated that it will be easy to implement

this protocol through a mapping into DA commands. A site using an OAi enabled DA

will be able to respond to generic OAi harvesting requests, but also have the additional

capabilities of the DA, such as T&C Ð which are currently not part of the OAi protocol,

or return metadata in non-extensible markup language (XML) encodings. Table 8 shows

the currently defined OAi Dienst subset ÒverbsÓ and their DA equivalents.

Some of the concepts do not directly map because the OAi Dienst heritage

emphasizes the preeminence of archives and DLs, where buckets emphasize the objects

themselves as the canonical source. For example, DAs can provide the metadata via

ÒDisseminateÓ as a convenience to the harvester, however the bucket remains the

canonical source of metadata about itself. Similarly, if the harvester wants the metadata in

a certain format, the expected procedure relative to buckets is to ask the bucket itself, not

the bucketÕs archive. However, the DA could be modified to perform these services on

the harvesterÕs behalf since not all harvesters will be bucket-aware.

Another area of concern is that Dienst encodes its messages in non-standard CGI

format, requiring modification of the http server configuration to successfully trap the

incoming http requests and route them to the correct location. In comparison, all bucket

messages (including DA messages) are entirely encapsulated in the http message and

require no server modifications. While not difficult to develop, a script would be required

to trap the incoming Dienst messages and re-route them into the DA format.

59

TABLE 8. OAi ® DA mapping.

OAi Dienst

Subset Verb

DA

Method

Discussion

Disseminate da_list Òda_listÓ with the ÒidÓ (or ÒurlÓ) and ÒmetadataÓ

argument currently fulfills the same purpose of the

ÒDisseminateÓ verb. ÒDisseminateÓ does support the

possibility of retrieving different metadata formats, while

Òda_listÓ only returns what was originally uploaded.

Òda_listÓ could be modified to perform this service as a

convenience to the harvester (calling the bucketÕs

ÒmetadataÓ method on the harvesterÕs behalf).

List-Contents da_list Òda_listÓ as currently implemented is not as general as

ÒList-ContentsÓ, but the Òda_listÓ arguments ÒadateÓ and

ÒsubjectÓ provide the same functionality. If other

partitions (or ÒclustersÓ) for the DA are defined, they

could be included in the same manner as ÒsubjectÓ. Note

that ÒList-ContentsÓ does not by default support the

concept expressed in the ÒpdateÓ argument to Òda_listÓ.

List-Meta-

Formats

da_info DAs could list their native metadata format(s) as part of

the Òda_infoÓ method.

List-Partitions da_info DAs could either list the partitions supported as part of

the Òda_infoÓ method, or it could just the list the pre-

defined partitions (or ÒclustersÓ) of the DA.

Structure n/a Òda_listÓ could be modified to provide this capability, but

metadata conversion is really the provenance of the

bucket (assisted through the BCS).

60

CHAPTER FIVE

BUCKET COMMUNICATION SPACE

5.1 Overview

The Bucket Communication Space (BCS) is partially motivated by Linda, the

parallel communication library (Carriero & Gelernter, 1989). In Linda, processes

effectively pass messages by creating ÒtuplesÓ that exist in Òtuple spaceÓ. These data

objects are created with the ÒevalÓ primitive, and filled with data by processes using the

ÒoutÓ primitive. Processes use ÒrdÓ and ÒinÓ for reading and reading-removing operations,

respectively. These primitives allow processes to communicate through tuple space,

without having to know the details (e.g. hostnames, port numbers) of where the processes

are. The messages written to tuple space can have regular expressions and control logic to

specify who should read them. When a ÒinÓ tuple sees an ÒoutÓ tuple and the conditions

of the former match that of the latter, the message is communicated to the receiving

process and the tuple is removed from tuple space. Though it imposes a performance

overhead, the Linda environment provides a useful layer of abstraction for inter-process

communication.

We wished to provide something similar for buckets: buckets communicating with

other buckets without having to know the details of bucket location. This is especially

important if the buckets are mobile, and a bucketÕs location is not guaranteed to be static.

The BCS also provides a method for centralizing functionality that cannot be replicated in

individual buckets. This could be either because of efficiency concerns (the resulting

bucket would be too bloated) or implementation limitations (a service is not available on

the architecture that is serving the bucket). Buckets need only know how to communicate

to a BCS server, which can handle their requests for them.

Buckets maintain the location of their BCS server through a bucket preference.

This allows for the specification of a single BCS server, with no provisions for if that

61

BCS server is not available. Currently, no detailed plans have been made for complex

BCS architectures. There is no built-in concept of a master BCS server for all buckets,

localized BCS servers, rings of BCS servers or any other architectural possibilities. If

these architectures are to be built, it will involve the modification of the BCS buckets to

recognize peer BCS buckets, master BCS buckets, etc. However, these modifications

should be transparent to the data buckets themselves, with data buckets still only tracking

the location of their entry into the bucket communication space.

The BCS model opens up many possible service areas. A subtle element of the

BCS is that buckets, not people, are responsible for the provision and coordination of

these services. We provide proof-of-concept implementations for four significant

services: file format conversion, metadata conversion, bucket messaging, and bucket

matching.

5.1.1 File Format Conversion

File format conversion provides bi-directional conversion of image (e.g. GIF,

JPEG) formats and page description formats (e.g., PostScript, PDF). Format conversion

is an obvious application Ð additional formats will become available after a bucketÕs

publication and the ability to either place them in the bucket or dynamically create them

will be useful in information migration.

5.1.2 Metadata Conversion

 Metadata conversion is similar to file format conversion, providing conversion

between some of the more popular metadata formats (e.g., Refer, RFC-1807, bibtex).

Metadata conversion is extremely important because although buckets ultimately have to

choose a single format to operate on, it is unreasonable to assume that all applications

needing metadata from the bucket should have to choose the same format. Being able to

specify the desired format to receive from a bucket also leaves the bucket free to change

its canonical format in the future.

62

5.1.3 Bucket Messaging

Messaging allows multiple buckets to receive a message if they match specific

criteria. While point-to-point communication between buckets is always possible, bucket

messaging provides a method for discovering and then sending messages to buckets.

Messaging provides functionality closer to the original inspiration of Linda, and can be

used as the core of a Òbucket-multicastingÓ service that sends pre-defined messages to a

subset of registered buckets. This could be used in turn to implement a metadata

normalization and correction service, such as that described by French, Powell,

Schumann, & Pfaltz (1997) or Lawrence, Bollacker, & Giles (1999).

5.1.4 Bucket Matching

The most compelling demonstration of the BCS is bucket matching. Matching

provides the capability to create linkages between ÒsimilarÓ buckets. Consider a technical

report published by the Old Dominion University computer science department that is

also submitted to a conference. The report exists on the DL maintained by the

department and the publishing authority is: ncstrl.odu_cs. If the conference paper is

accepted, it will eventually be published by the conference sponsor. For example, say the

conference sponsor is the Association for Computing Machinery, whose publishing

authority would be ncstrl.acm. Although the conference paper will surely appear in a

modified format (edited and perhaps abbreviated), the technical report and the conference

paper are clearly related, despite being separated by publishing authority, date of

publication, and editorial revisions. Two separate but related objects now exist, and are

likely to continue to exist.

How best to create the desired linkage between the two objects? It is easy to

assume ncstrl.acm has neither the resources nor the interest to spend the time searching

for previous versions of a manuscript. Similarly, ncstlrl.odu_cs cannot link to the

conference bucket at the creation time of the technical report bucket, since the conference

bucket did not exist then. It is unrealistic to suggest the relevant parties will go back to

the ncstrl.odu_cs archive and create linkages to the ncstrl.acm bucket after six months to a

63

year have passed. However, if both buckets are registered in the same bucket

communication space (by way of sending their metadata or fulltext), they can Òfind each

otherÓ without human intervention. When a match, or near match (the threshold for

ÒmatchÓ being a configurable parameter) is found, the buckets can either automatically

link to each other, or inform a human reviewer that a potential match has been found and

request approval for the linkage.

This technique could also be used to find related work from different authors and

even duplications (accidental or plagarious). In the test runs using the NACA portion of

the Universal Preprint Service (see chapter six), find multi-part reports were found (e.g.

Part 1, Part 2), Technical Notes (archival equivalent of a computer science technical

report) that were eventually published as Reports (archival equivalent of a journal article),

and a handful of errors where duplicate metadata was erroneously associated with

multiple reports.

5.2 Implementation

While the current BCS implementation lacks the elegance of Linda, it is easy to

implement. Similar to DA, instead of developing an entirely new application for the BCS,

buckets were modified to have BCS-specific methods. Also similar to the DA, none of

the standard bucket methods were removed in the BCS, even though it is not envisioned

that end users working directly with the BCS. Although presented as two separate

buckets, it is possible for a single bucket to be both a BCS server and a dumb archive.

However, BCS differs from DA in that the DA makes no assumption that the objects in

the DA are buckets, but the BCS does assume that all of the objects it has registered are in

fact buckets.

5.2.1 Implemented Methods

Table 9 includes a short summary of the BCS methods, and Appendix D covers

them in detail. Òbcs_registerÓ, Òbcs_unregisterÓ, and Òbcs_listÓ are used to manage the

internal data structures for inclusion in the BCS. The BCS uses the DBM variants,

GDBM or NDBM, for its internal storage just as the DA does.

64

Òbcs_convert_imageÓ is simply a wrapper to the Image Alchemy conversion

program (Image Alchemy, 2000). Any conversion program could be used, such as the

popular freeware product ImageMagick (ImageMagick, 2000). In fact, it would have been

preferable to use ImageMagick, not only because it was free but also because it includes a

Perl module for easy conversion and manipulation from inside a script. However,

ImageMagick was not installed on the development machines, so Image Alchemy was

used instead. It would also be possible to implement Òbcs_convert_imageÓ using a suite

of tools instead of just one, or to implement a more sophisticated format conversion

environment, such as the Typed Object Model (TOM) Conversion Service (Ockerbloom,

1998). Although Image Alchemy supports over 100 image formats, the current version of

Òbcs_convert_imageÓ only implements the popular TIFF, GIF, JPEG, PNG, PostScript

and PDF formats for demonstration purposes.

TABLE 9. BCS API.

Method Description

bcs_convert_image converts an uploaded image to a specified format

bcs_convert_metadata converts an uploaded metadata file to another metadata file

format

bcs_list lists all the buckets registered with the BCS

bcs_match finds & creates linkages between all ÒsimilarÓ buckets

bcs_message identifies buckets that match a specific criteria, and sends them

a message

bcs_register registers the bucket into the BCS

bcs_unregister unregisters the bucket from the BCS

Òbcs_convert_metadataÓ is a wrapper for our own metadata translation program,

mdt (Nelson, et al, 1999). In the course of implementing various DL projects, a host of

metadata translation scripts have been developed Ð some generalized, some highly

65

specialized. Furthermore, there are a number of other metadata translation programs

freely available, such as ÒbpÓ (Jacobsen, 1996) and ÒInterBibÓ (Paepcke, 1997). Many of

these programs have overlapping format coverage and none perform all conversions with

equal proficiency. Ideally, Òbcs_convert_metadataÓ should be constructed from the union

of the best metadata conversion programs, not just a single one. However, for

demonstration, only mdt is used and the following formats are supported: refer (Lesk,

1978), bibtex (Knuth, 1986), RFC-1807, Dublin Core (Weibel, Kunze, Lagoze, & Wolfe,

1999), and the Open Archives Metadata Set (OAMS) (Van de Sompel & Lagoze, 2000).

Òbcs_messageÓ searches through all the registered buckets, looking for those that

match a regular expression passed in as an argument. Òbcs_messageÓ can either return the

unique ids / URLs of the matching buckets, and/or send the matching buckets a message

(also passed in as an argument).

Òbcs_matchÓ searches through all the registered buckets, either comparing all of

them against all of them, or a list (passed in as an argument) of buckets against all of them.

Òbcs_matchÓ considers only the metadata passed in during registration when computing

similarity. To determine similarity, Òbcs_matchÓ uses the cosine correlation with

frequency term weighting (CCFTW), first used by Salton & Lesk (1968). Adapting

HarmanÕs (1992) definition of CCFTW to document-document comparison (instead of

document-query), similarity is defined as:

 n

 å (tdij á tdik)
 i=1

similarity (dj,dk) = ÑÑÑÑÑÑÑÑÑ
 n n

 å tdij
2 á å tdik

2

 i=1 i=1

where

tdij = the ith term in the vector for document j

tdik = the ith term in the vector for document k

 n = the number of unique terms in documents j and k

66

The CCFTW returns a number between 0 and 1. For the testbed of 3036 NACA

documents, it was informally determined that a useful threshold for similarity was 0.85.

Numbers much below 0.85 did not appear similar on inspection. Conversely, numbers at

or above 0.93 were almost always the ÒsameÓ document published in another version (i.e.,

NACA TN vs. NACA Report). The similarity threshold is tunable parameter Ð different

corpora may require different thresholds.

FIG. 18. NACA bucket before similarity matching.

67

To initiate similarity matching for the contents registered with the BCS, the

following message would be sent:

http://dlib.cs.odu.edu/bcs/?method=bcs_match
&threshold=0.90&report=on&link=on

The ÒthresholdÓ argument resets the definition of relevancy for the value returned

from the CCFTW function. The ÒreportÓ argument stores the results of the matching in

the BCS bucket for later perusal (the default value is to discard the results), and the ÒlinkÓ

argument instructs the BCS server to attempt the buckets that are found to be similar (the

default action is to report the findings but not link). An example of a NACA report before

and after similarity matching is shown in figures 18 and 19.

FIG. 19. NACA bucket after similarity matching.

68

Other similarity measures are possible, including the inverted document frequency

(IDF) measure (Sparck Jones, 1972) and its variations (Sparck Jones, 1979; Croft &

Harper, 1979), and the 2-Poisson model (Bookstein & Swanson, 1974). Also, it could be

possible to implement the algorithms used in duplication and plagiarism detection

systems such as SCAM (Shivakumar & Garcia-Molina, 1995), MDR (Monostori,

Zaslavsky, & Schmidt, 2000), and dup (Baker, 1995a). However, the purpose of

Òbcs_matchÓ was not to test which measures are best, but rather to simply prove the

BCS could perform the service.

If a DL is used to discover a bucket with BCS similarity links, the search results

page of the DL will likely have many of the same buckets listed there that are listed as

similarity links in the bucket. However, depending on the search criteria (such as

searching on authors or dates instead of abstract keywords), the search results and

similarity links could also differ significantly. The similarity links provide a fixed

navigation structure for the corpus that does not change as search criteria change. Also,

the presence of BCS similarity links does not preclude the existence of a compliementary

value-added service that performs dynamic searches into other DLs for documents similar

to the current bucket. A dynamic similarity service would offer more flexibility in finding

relevant documents, but it also assumes the continued existence and accessibility of the

service.

5.2.2 Changes From a Regular Bucket

A BCS bucket is similar to a regular bucket, but with the seven new bcs_*

methods in the _methods.pkg package. Also, a new package, bcs.pkg, is added to

contain all the support libraries, programs and data files for BCS operation.

The resulting BCS bucket is larger and even less mobile than the DA. A BCS

bucket carries two of its support programs with it: mdt and Image Alchemy. mdt is a

Perl program, so it is portable, but Image Alchemy is binary program (approximately

3MB) that is obviously not portable between architectures. BCS buckets also use DBM

69

variations for their registration data structures, and thus inherit their portability

limitations. However, it is unlikely that BCS buckets will be expected to be mobile, and

since a site will probably not have more than one BCS bucket (or at most a few), their

increased size should not be a problem.

5.3 Discussion

It should be stressed that the newer BCS buckets lag behind regular buckets in

their development and maturity, regular buckets having the benefit of several years of

testing in production environments. Combined with the fact that BCS buckets perform

more sophisticated tasks, a review of BCS operation should be considered proof-of-

concept of BCS operation, and not the final representation of their capability and

performance profile.

5.3.1 Performance Considerations

Two of the BCS methods have significant time requirements for their operation,

and are the first targets for optimization. Òbcs_messageÓ performs a linear search through

all the registered buckets searching for those that match the requested regular expression.

If the BCS bucket used an existing search engine, or implemented its own inverted files for

this purpose, Òbcs_messageÓ would run in O(logn) time.

Even more inefficient is the Òbcs_matchÓ method, which currently runs in O(n2).

This is because the default case is to compare everything to everything else. With the

3036 NACA documents in UPS as the testbed, the similarity matching was run on all of

the documents. 3036 documents require 9,217,296 comparisons. However, since

similarity is bi-directional, only half that many were computed. Similarity matching for a

corpus can be thought of as filling a matrix similar to Figure 20. The diagonal is all 1Õs

(since documents are always completely similar to themselves), and the bottom half of

the matrix is simply a duplication of the top half.

The implementation eventually optimized to the point where it could complete

approximately 576,000 comparisons per hour while running on the NACA collection,

finishing the NACA documents in approximately 8 hours. The largest collection

70

Òbcs_matchÓ has actually been tested on is 6,867 documents (UPS NACA (3036) + UPS

Math (3831)). Similarity matching on this collection ran in approximately 42 hours, for

approximately 561,000 comparisons per hour. The final results found no similar

documents between the two collections, and 159 matches in the NACA collection and 35

matches in the Math collection.

Computing similarity is hard. For example, even though Dienst provides a user

option for ranking the search results by relevancy, it remains unimplemented. The

commonly available Wide Area Information Server (WAIS) search engine (Kahle, Morris,

Davis, Tiene, Hart, & Palmer, 1992) implementations arbitrarily limit the set of returned

documents to be in the range of 200 - 450, which allows similarity computation to be

tractable.

id-1 id-2 id-3 id-4 É id-n

id-1 1 0.298 0.783 0.267 É 0.459

id-2 1 0.976 0.732 É 0.432

id-3 1 0.868 É 0.291

id-4 1 É 0.870

É 1 0.904

id-n 1

FIG. 20. Sample similarity matching matrix.

not computed -
same as above
the diagonal

71

An obvious optimization would be to use inverted files, and perform similarity

matching on only those documents that have a minimum level of intersection between

them. This is similar to what a search engine does: finding the documents that have the

same keywords as the query, and performing similarity matching only on those

documents. However, Òbcs_matchÓ would not gain the same great reduction in the search

space because typical queries are only a few words, so filtering through an inverted file is

likely to produce only a small number of documents. In Òbcs_matchÓ, the query is

actually an entire document, so the search space would not be reduced the same amount

as a relatively small query.

Another optimization, somewhat related to the above, is to use a clustering

technique (Rasmussen, 1992) to partition the corpus into a smaller number of ÒrelatedÓ

sections, and perform similarity matching only within those partitions. This is illustrated

in the similarity run with the combined NACA and Math collections. That run took 42

hours, and found no matches between the two collections. When the similarity matching

is run on the two collections sequentially, both runs can be completed in approximately 8

hours each.

Both clustering and inverted files address the similarity matching problem by

reducing the search space, clearly a necessary optimization for an O(n2) algorithm.

However, clustering merely postpones the problem. If the size of the collection grows to

30,000,000 documents, and clustering techniques are employed to produce partitions of,

for example, 30,000 documents, then similarity matching will still require O(n2) within

that cluster. The problem could be further postponed if more efficient implementations

of Òbcs_matchÓ could yield dramatic improvements over 570,000 comparisons per hour.

Another optimization approach would be to exploit the parallelizable nature of

similarity matching. Consider partitioning the similarity matrix such that regions of the

matrix were assigned to separate computers (Fig. 21). No communication between

computers handling different regions is necessary; they could simple report their results

back to the BCS server that would then collate their results. This could be accomplished

72

by harvesting idle workstation cycles (Kaplan & Nelson, 1994; Baker, 1995b), or even

through a specialized screen saver similar to the popular SETI@Home, which taps the

power of idle personal computers (Sullivan, Werthimer, Bowyer, Cobb, Gedye, &

Anderson, 1997). This approach to similarity matching could be pursued independently

of other possible optimizations.

FIG. 21. Partitioning of the similarity matching matrix

5.3.2 Current Limitations

The BCS puts a solid foundation in place, but as yet individual buckets and the

BCS buckets themselves have not tapped its real potential. The BCS does not yet have

the Òkiller appÓ needed to unequivocally demonstrate its usefulness. The similarity

matching is a good candidate, but the performance limitations of current implementation

make it less than compelling. Designing and implementing the ÒperfectÓ similarity

matching solution is a significant undertaking in its own right. We hope the easily

extensible nature of the BCS buckets will encourage others to optimize existing, or

develop new BCS services.

 not computed -
 same as above
 the diagonal

Host 3

 Host 1

 Host 2

Host n

73

Another limitation is the messages passed through the BCS (or even bucket-to-

bucket) are defined in terms of the already existing bucket API. That is, there is currently

no way to construct a message for a bucket to specify something other than what is

available through the bucket API. An unexplored realm would be defining general bucket

messages, perhaps encoded in the Knowledge Query Manipulation Language (KQML)

(Finin, Fritzson, McKay, & McEntire, 1994), to specify a bucketÕs beliefs, desires and

intentions. In short, buckets are intelligent, but not as intelligent as they can be, and the

BCS is the infrastructure that will facilitate the intelligence growth of buckets.

74

CHAPTER SIX

BUCKET TESTBEDS

6.1 NCSTRL+

Bucket development was begun within the context of the NCSTRL+ project.

NCSTRL+ is the result of several years of research and development in digital libraries

(Fig. 22). In 1992, the ARPA-funded CS-TR project began (Kahn, 1995) as did LTRS.

In 1993, WATERS (Maly, French, Fox, & Selman, 1995) shared a code base with LTRS.

In 1994, LTRS launched the NTRS, and the CS-TR and WATERS projects formed the

basis for the current NCSTRL (Davis & Lagoze, 2000). In 1997, NCSTRL+ was begun,

drawing from the contents of NCSTRL and NTRS.

NCSTRL+ was used as the primary testbed for buckets and other DL

technologies from 1997-1999. NCSTRL+ contains approximately 1000 buckets drawn

from LTRS as well as a handful of buckets constructed for various Old Dominion

University research projects. NCSTRL+ also provides distributed searching into the

NCSTRL collection.

6.1.1 Dienst

Dienst was chosen to implement NCSTRL+ instead of other digital library

protocols such as TRSkit (Nelson & Esler, 1997) because of DienstÕs success over several

years of production in NCSTRL. Dienst appeared to be the most scalable, flexible, and

1992 1993 1994

CS-TR NCSTRL

WATERS

LTRS
(TRSkit) NTRS

1995 1996 1997

NCSTRL+

FIG. 22. NCSTRL+ lineage.

75

extensible of digital library systems surveyed (Esler & Nelson, 1998), but scalability

limitations were discovered in the reference implementation (Van de Sompel, Krichel,

Nelson, et al., 2000b). However, this was a limit of the reference implementation, not the

protocol itself. Dienst has also been used in a variety of DL experiments, such as the

Networked Digital Library of Theses and Dissertations (Fox, Eaton, McMillan, et al.,

1997), the Electronic Library for Grey Literature (part of the MeDoc project) (Adler,

Berger, Bruggemann-Klein, et al., 1998), the European Technical Reference Library

(Andreoni, Bruna Baldacci, Biagioni, et al., 1998), the ACM-sponsored Computing

Research Repository (CoRR) (Halpern & Lagoze, 1999), and most recently the Open

Archives initiative data harvesting protocol (Van de Sompel & Lagoze, 2000). For

NCSTRL+, Dienst 4.1.8 is used. Dienst 5.0 has some significant architectural changes

that make it less suitable for these particular research purposes. Most notable is the

switch from a distributed search to a centralized search mechanism. Full distributed

searching was abandoned for the production version of NCSTRL because of the low

availability of the entire distributed system. One study from 1997-1999 found that at

least one of the nodes in NCSTRL was always unavailable (Powell & French, 2000).

While Dienst is discipline independent, it is currently discipline monolithic. It

makes no provision for knowledge of multiple subjects within its system. While it is

possible to set up a collection of Dienst servers independent of NCSTRL, there is no

provision for linking such collections of servers into a higher level meta-library. A

collection service has been proposed that would allow for partitioning of a serverÕs

holdings (Lagoze & Fielding, 1998), but the collection service is not in production use.

Dienst consists of 5 components: 1) Repository Service; 2) Index Service; 3)

Meta-Service; 4) User Interface Service; and 5) Library Management Service. Each of the

services has a list of valid ÒverbsÓ that the service understands, and some of the verbs can

take arguments. Dienst uses http as a transport protocol. The standard format is:

http://machine.name:port/Dienst/Service/Version/
Verb/Arguments

76

An example of a valid Dienst request is:

http://repository.larc.nasa.gov:8080/Dienst/Meta/
2.0/Publishers/

This contacts the Meta-Server service at repository.larc.nasa.gov and requests a

list of publishing authorities that this machine contains. Dienst names objects in

collections using handles, a URN implementation from the Corporation for National

Research Initiatives (CNRI). NCSTRL+ uses the experimental and unregistered handles

of Òncstrlplus.larcÓ and Òncstrplus.odu.csÓ. Meta-data for objects is stored in RFC-1807

format.

The basic architecture of NCSTRL has a single entry point (Òhome pageÓ) for user

access. Each publishing authority (in practice, an authority generally corresponds to a

university department or laboratory) runs its own copy of the Dienst software. The

home page gathers the queries and dispenses the queries in parallel to each server, gathers

the results, and displays the correlated results to the user. To assist with performance

and reliability, Dienst now employs a Regional Meta-Server (RMS) to partition all

NCSTRL participants into geographic regions. The various RMSs share their data with

the Master Meta Server (MSS) at Cornell (the home of Dienst and NCSTRL). A Merged

Index Server (MIS) provides a single index of all the metadata outside a region. A search

query is sent to all standard sites within a region, and to the regionÕs MIS for metadata

outside the region.

6.1.2 Clusters

While Dienst is a successful production quality DL protocol, it has some inherent

limitations that prevent additional features from being added. Among these is the

inability to subdivide collections along anything other than institutional boundaries.

Clusters are a way of aggregating logically grouped sub-collections in a DL along

some criteria. NCSTRL+ provides 4 clusters: organization, archival type, terms and

77

conditions, and subject category. Organization is the Òpublishing authorityÓ that is

included by default in Dienst. Archival type includes specifies the semantic type, such as

pre-print, technical report, software, datasets, etc. The terms and conditions cluster

specifies the access restrictions associated with the object, such as free, password or

monetary charge required, etc. For subject category, the NASA STI categories were

adopted and modified slightly to be less aerospace-centric (Tiffany & Nelson, 1998). A

two-level hierarchy, there are 11 top-level categories, and each category has

approximately 10 sub-level categories. This provides subject classification that is broad

and lightweight.

6.2 Universal Preprint Service

The Universal Preprint Service (UPS), which has since been renamed the Open

Archives initiative (OAi), is a much larger DL testbed introduced in October 1999 and is

based on NCSTRL+ software. The UPS prototype was a feasibility study for the

creation of cross-archive end-user services. With the premise that users would prefer to

have access to a federation of digital libraries, the main aim of the project was the

identification of the key issues in actually creating an experimental end-user service for

data originating from important existing, production archives. This included a total of

almost 200,000 buckets harvested from six existing production DLs. Table 10 provides a

list of the archives and their contributed content. A full discussion of the results from the

UPS project can be found elsewhere (Van de Sompel, Krichel, Nelson, et al., 2000a; Van

de Sompel, Krichel, Nelson, et al., 2000b). The two key bucket-related technologies are

lightweight buckets and SFX reference linking within buckets.

78

TABLE 10. UPS participants.

Archive / DL Records in DL Buckets in UPS Buckets Linked to

Full Content

arXiv

www.arxiv.org

128943 85204 85204

CogPrints

cogprints.soton.ac.uk

743 742 659

NACA

naca.larc.nasa.gov

3036 3036 3036

NCSTRL

www.ncstrl.org

29680 25184 9084

NDLTD

www.ndltd.org

1590 1590 951

RePEc

netec.mcc.ac.uk

71359 71359 13582

Totals: 235361 187115 112516

6.2.1 Lightweight Buckets

Only the metadata was harvested from the six archives Ð not the actual content

itself. While harvesting the full content would have been technically possible, it would

have been storage intensive and would have added little to the cross-archive

demonstration. The resulting buckets were dubbed Òlightweight bucketsÓ, since they

contained only the metadata and pointers back to the content in the original archives.

However, the lightweight buckets proved to be useful containers for additional material

and value added services that could not be added to the original archive. Although the

BCS was not completed at the time of the UPS demonstration, the lightweight buckets

have since served as mount points for BCS value-added services, such as bucket matching.

There is an entire class of applications where it is desirable to aggregate information about

79

an object, but the original object cannot be moved due to storage constraints or intellectual

property restrictions. For UPS, metadata was aggregated in multiple formats, (RFC-1807

and ReDIF (Cruz & Krichel, 1999)), and used the buckets as attachments for services

such as the SFX reference linking service.

6.2.2 SFX Reference Linking in Buckets

The SFX reference linking service (Van de Sompel & Hochstenbach, 1999) is a

dynamic layer of abstraction between bibliographic information objects and potential

library databases and services. The traditional library has an array of commercial

databases and services, such as:

- ISIÕs Current Contents

- ISIÕs Journal Citation Reports

- UlrichÕs International Periodicals Directory

- Books in Print

- Online Public Access Catalogs (OPACs)

- Serial Catalogs

- Publisher Full-Text Databases (Elsevier, Springer-Verlag, IEEE, etc.)

The number of these services available at a library depends on the nature of the

library, their budget, customer profile, and other factors. The list of services is dynamic,

with services being added and deleted as they become available, fall into disuse or move.

Given all this, static linking between an object and the services applicable to an object is

not feasible. SFX provides a dynamic lookup of the services that are likely to be

available, given the nature of the bibliographic information and a set of heuristics defined

by the local library. For example, a book should produce links to ÒBooks in PrintÓ and

perhaps ÒAmazon.comÓ, but not ÒJournal Citation ReportsÓ.

The SFX reference linking service was placed in buckets by way of using ÒSFX

buttonsÓ. A button was available for both pre- and post-publication versions of the

work, if both versions were known to be available. Figure 23 shows a UPS bucket with

80

both pre- and post-publication SFX buttons. Of the six constituent archives comprising

UPS, only arXiv, RePEc and NCSTRL received SFX buttons. The SFX server did not

have enough interesting services to warrant SFX buttons for the buckets from the other

three archives. The buttons themselves link to a SFX server, which then queries the

calling bucket to retrieve the bucketÕs metadata in ReDIF format. The SFX server then

presents an interface to the user showing the various services that are applicable to the

bucket (Fig. 24). The user can correct misspellings in authorsÕ names, volume numbers or

other fields that may have been parsed incorrectly before submitting the request to get

that service.

FIG. 23. A UPS bucket with SFX buttons.

81

FIG. 24. SFX interface.

Since a SFX server provides an interface to a locally defined set of value-added

services (which are often subscription based), each local site is expected to have its own

SFX server. This introduces the complication of having to tell the bucket which SFX

server a particular user should be referencing. Buckets can set a default SFX server

through a bucket preference. SFX server values can also be passed in as arguments to the

ÒdisplayÓ method, or by using http cookies. The order of precedence is:

82

1. http argument to the ÒdisplayÓ method (ÒsfxÓ)

2. http cookie (Òsfx_urlÓ)

3. bucket preference (Òsfx_serverÓ)

The possible values for the SFX server will be evaluated, and the link to the server

is dynamically built in the HTML display to the user. In the UPS prototype, the NCSA

http server required by the Dienst software did not support cookies, so a bucket

preference was used to specify a SFX server hosted by the University of Ghent for the

duration of the demonstration. It would normally be the responsibility of the DL

software to set either the cookie, or pass in the argument to the ÒdisplayÓ method to

correctly specify the SFX server. If this is not possible, the University of Ghent has

developed Òcookie pusherÓ scripts that allow a client to overcome the limitation of http

cookies only being sent to the site that set them. Using a cookie pusher, a client could use

a cookie to point to their local SFX server even when visiting previously unvisited, non-

local buckets.

All other SFX demonstrations have involved the modification of the DL software

to present SFX buttons during the searching and displaying of results. The UPS

implementation of SFX reference linking demonstrates that buckets can be used as mount

points for value added services, including those developed by other research groups, and

requiring little or no modification of the DL software. This is especially important if the

DL software is a commercial, non-open source product. The value-added services are

attached to the data object itself, so no matter how the bucket is discovered, the services

will be available to the user.

83

CHAPTER SEVEN

RELATED WORK

7.1 Aggregation

There is extensive research in the area of redefining the concept of ÒdocumentÓ or

providing container constructs. In this section we examine some of these projects and

technologies that are similar to buckets.

7.1.1 Kahn/Wilensky Framework and Derivatives

Buckets are most similar to the digital objects first described in the

Kahn/Wilensky Framework (Kahn & Wilensky, 1995), and its derivatives such as the

Warwick Framework containers (Lagoze, Lynch, & Daniel, 1996) and its follow-on, the

Flexible and Extensible Digital Object Repository Architecture (FEDORA) (Daniel &

Lagoze, 1997). In FEDORA, DigitalObjects are containers, which aggregate one or more

DataStreams. DataStreams are accessed through an Interface, and an Interface may in

turn be protected by an Enforcer. Interaction with FEDORA objects occurs through a

Common Object Request Broker Architecture (CORBA) (Vinoski, 1997) interface. No

publicly accessible, FEDORA implementations is known to exist at this point, and it is

not known what repository or digital library protocol limitations will be present.

7.1.2 Multivalent Documents

Multivalent documents (Phelps & Wilensky, 2000) appear similar to buckets at

first glance. However, the focus of multivalent documents is more on expressing and

managing the relationships of differing Òsemantic layersÓ of a document, including

language translations, derived metadata, annotations, etc. One of the more compelling

demonstrations of Multivalent documents is with geospatial information, with each

valence representing features such as rivers, political boundaries, road infrastructure, etc.

There is not an explicit focus on the aggregation of several existing data types into a single

container. Multivalent documents provide a unique environment for interacting with

84

information that maps well to the semantics of having multiple ÒlayersÓ. Although not

yet attempted, Multivalent documents could reside inside buckets, effectively combining

the benefits of both technologies.

7.1.3 Open Doc and OLE

OpenDoc (Nelson, 1995) and OLE (and its many variations) (Brockschmidt,

1995) are two similar technologies that provide the capability for compound documents.

Both technologies can be summarized as viewing the document as a loose confederation of

different embedded data types. The focus on embedded documents is less applicable to

our digital library requirements than that of a generic container mechanism with separate

facilities for document storage and intelligence. OpenDoc and OLE documents are more

suitable to be elements within a bucket, rather than a possible bucket implementation.

7.1.4 Metaphoria

Metaphoria is a WWW object-oriented application in which content is separated

from the display of content (Shklar, Makower, Maloney, & Gurevich, 1998).

Metaphoria is implemented as Java servlets that aggregate derived data sources from

simple data sources, with possible multiple layers of derived data sources. A simple data

source could be an ASCII file, a WWW page, or an SQL query. Metaphoria parses the

content and makes it available through multiple representations, or document object

models. It has additional presentation enriching capabilities, such as caching and session

management. Metaphoria provides a complex server environment where the main focus is

the dynamic reconstitution and presentation of data sources. As such, Metaphoria could

sit ÒaboveÓ the bucket layer, where it would be used as a highly sophisticated

presentation mechanism for viewing collections of buckets.

7.1.5 VERS Encapsulated Objects

The Victorian Electronic Record Strategy (VERS) focuses on VERS Encapsulated

Objects (VEOs) as a way of preserving the governmental records of Australian state of

Victoria (Waugh, Wilkinson, Hills, & Dell�ro, 2000). VEOs are designed to insure the

long-term survivability of the archived object, with as much encapsulation and textual

85

encoding of its contents as possible, even going as far as expressing binary data formats in

Base64 encoding (Borenstein & Freed, 1993). A significant difference between buckets

and VEOs is the latter are purely for archival preservation. VEOs are actually XML

objects, and thus have no computational capability of their own. They rely on another

service to instantiate and read them.

7.1.6 Aurora

The Aurora architecture defines a framework for using container technology to

encapsulate content, metadata and usage (Marazakis, Papadakis, & Papadakis, 1998).

Aurora defines the containers in which arbitrary components can execute, providing a

variety of potential services ranging from shared workspaces, pipelining of electronic

commerce components, and workflow management. AuroraÕs encapsulation of metadata,

data and access is similar to that of buckets. The Aurora framework of services are

defined in terms of a CORBA-based implementation, and the range of services available in

Aurora reflect the richness and complexity of CORBA.

7.1.7 Electronic Commerce

Two representative electronic commerce (or e-commerce) solutions are ÒDigiBoxÓ

(Sibert, Bernstein, & Van Wie, 1995) and IBMÕs ÒcryptolopesÓ (Kohl, Lotspiech, &

Kaplan, 1997). Cryptolopes define a three-tier architecture designed to provide potential

anonymity between both the users and providers of information through use of a middle

layer clearinghouse. The goal of DigiBox is Òto permit proprietors of digital information

to have the same type and degree of control present in the paper worldÓ (Sibert,

Bernstein, & Van Wie, 1995). As such, the focus of the DigiBox capabilities are heavily

oriented toward cryptographic integrity of the contents, and not on the less stringent

demands of the current average digital library.

E-commerce solutions are highly focused on providing ÒsuperdistributionÓ (Mori

& Kawahara, 1990), where information objects are opaque and can be distributed widely,

but are only fully accessible through use of a key (presumably for sale from a service).

86

There appear to be no hooks for DigiBox or cryptolope intelligence. Both are commercial

endeavors and are less suitable for research in value-added DL services.

7.1.8 Filesystems and File Formats

To a lesser extent, buckets are not unlike some of the proposals from various

experimental filesystems and scientific data types. The Extensible File System (ELFS)

(Karpovich, Grimshaw, & French, 1994) provides an abstract notion of ÒfileÓ that

includes both aggregation, data format heterogeneity, and high performance capabilities

(striping, pre-fetching, etc.). While ELFS is designed primarily for a non-DL application

(i.e., high-performance computing), it is typical of an object-oriented approach to file

systems, with generic access APIs hiding the implementation details from the

programmer.

The Hierarchical Data Format (HDF) and similar formats (netCDF, HDF-EOS,

etc.) is a multi-object, aggregative data format that is alternatively: raw file storage, the

low-level I/O routines to access the raw files, an API for higher level tools to access, and a

suite of tools to manipulate and analyze the files (Stern, 1995). While HDF is mature and

has an established user base, it is largely created by and for the earth and atmospheric

sciences community, and this communityÕs constraints limits the usefulness of HDF as a

generalized DL application. It is worth noting, however, that buckets of HDF files

should be entirely possible and appropriate.

7.2 Intelligence

Intelligent agent research is an active area. There are many different definitions of

what constitutes an ÒagentÓ. From Birmingham (1995), we use the following definition:

ÒAutonomy: the agent represents both the capabilities (ability to
compute something) and the preferences over how that capability is
used. [É]
Negotiation: since the agents are autonomous, they must negotiate
with other agents to gain access to other resources or capabilities.
[É]Ó

87

Using this definition, it is clear that buckets satisfy the autonomy condition, since

buckets perform many computational tasks that are influenced by their individual

preferences. However, the current implementation of buckets only weakly satisfy the

negotiation condition, since only a handful of transactions have actual negotiation. An

example of such a transaction is the case when a bucket requests metadata conversion

from the BCS; there is a negotiation phase where the requesting bucket and the BCS

server negotiate the availability of metadata formats. However, the direction is clear that

buckets are becoming increasingly intelligent, so they will eventually be considered

unequivocally as true agents.

In practice, the information environment application of intelligent agents has

generally dealt with assistants to aid in searching, search ordering, finding pricing bargains

from on-line sales services, calendar maintenance, and other similar tasks. Birmingham

(1995) defines the three classes of agents in the University of Michigan section of the

NSF funded DLI: User Interface Agents, Mediator Agents, and Collection Interface

Agents. Other projects are similar: agents to help DL patrons (Sanchez, Legget, &

Schnase, 1997), retrieval and access agents (Salampasis, Tait, & Hardy, 1996), and DL

construction/authoring (Sanchez, Lopez, & Schnase, 1998). There appear to be no other

projects that attempt to make archival objects intelligent. Note that making the archived

object intelligent does not preclude the use of other agents in a DL environment (search

agents, collection agents, etc.). In fact, increasingly intelligent buckets should be able to

assist the traditional DL agents in performing their tasks.

7.3 Archives

There has been an increased amount of interest regarding the nature of archives,

specifically in the separation of the roles of providing (or ÒpublishingÓ, or ÒarchivingÓ)

data and of discovering (or ÒsearchingÓ) data. In early DL projects, there was often little

distinction but with DLs reaching larger scales and the greater interest in interoperability,

such vertically integrated DLs are no longer feasible. The current highest profile archive

88

project is the Open Archives initiative, presented in Chapter Six. However, a number of

other projects have demonstrated this separation of roles as well.

The Guildford Protocol (Cruz & Krichel, 1999) has been in use in the Economics

community for quite some time within the RePEc project (a participant in UPS). RePEc

is unique in that it specifies no user services, but only focuses on the coordination and

propagation of distributed collections of metadata. Several DLs have been built from the

metadata harvested from RePEc. Dienst has a Repository service, a portion of which

forms the basis for the OAi harvesting protocol. Unfortunately, the full Dienst

Repository service also contains the concept of a document model. The inclusion of a

document model in an archival service is too heavy and limits the applications of that

archival service. Stanford has proposed archival awareness algorithms, in which

distributed archives can maintain consistency in the face of updates and deletions (Crespo

& Garcia-Molina, 1997).

There are a number of other possible implementations for archival services.

Although using a RDBMS or the light-weigh directory access protocol (LDAP) (Yeong,

Howes, & Kille, 1995) seems to be an obvious implementation, there appear to be no

such archive implementation within the DL community.

7.4 Bucket Tools

Related to buckets, but being developed separately by another team at Old

Dominion University, are tools for bucket creation, administration and simple workflow

management. The need for high quality tools for the creation and management of buckets

is obvious: no matter how expedient and useful buckets may be, if they are not created in

sufficient quantities they will not be adopted on a large scale. The bucket tools are

needed to hide the details of bucket creation from ordinary users, and if bucket tools use

the bucket API for all of their actions, the tools should be applicable across bucket

implementations.

For batch creation of buckets, a number of scripts have been developed to

automate the process. However, they tend to be specialized for the DL they are

89

populating and are not really worthy of being called a ÒtoolÓ. A suite of three integrated

tools has been created that can be installed at a local site to provide a simple author-based

publishing workflow. These tools should be considered a reference implementation of

possible tools for buckets Ð additional implementations or tools of different natures are

possible. The process begins with an author accessing the Creation Tool (Fig. 25), which

is used to create and populate a bucket. The buckets are kept in a temporary staging

archive, where only the author can access the bucket. The population can occur over

many sessions, with the author saving the intermediate bucket at the end of each session.

FIG. 25. Creation tool.

90

When the author is done with the bucket, it can be submitted for review by

management. This physically moves the bucket from its temporary staging archive to the

management archive. The manager receives an email stating that a new bucket has arrived.

The manager will then use the Management Tool (Fig. 26) to review the pending buckets.

The manager can approve, disapprove or defer action on the list of buckets. Disapproved

buckets will go back to the authorÕs temporary staging archive, and approved buckets will

be promoted to the siteÕs official archive. It is the official archive that DLs know to

harvest from, and placement into this privileged archive constitutes ÒpublishingÓ.

FIG. 26. Management tool.

91

Finally, the Administration Tool (Fig. 27) provides a mechanism for the

maintenance of already published buckets. This tool provides a standard interface to

multi-cast messages to multiple buckets, for such functions as harvesting their log files,

updating preferences, adding general value-added services, and all such functions that are

not part of the creation/approval process.

FIG. 27. Administration tool.

92

CHAPTER EIGHT

FUTURE WORK

8.1 Alternate Implementations

The lessons learned from implementing buckets and the supporting technology,

along with their success and popularity in NCSTRL+ and UPS, point to many areas of

future work, of both practical and academic interest. Perl and CGI are good development

platforms. Perl is expressive, commonly available and reasonably fast. However, there

are a number of other interesting languages that deserve study. Plain CGI is low

performance, often running at 10% - 50% of the performance of regular http requests for

small transactions, with Perl CGI programs performing slightly worse than C CGI

programs (McGrath, 1996).

8.1.1 Buckets

There are three, possibly overlapping, areas for alternate implementation for

buckets: rewriting buckets in another language, replacing CGI, and making the API

available through something other than http.

Buckets could be rewritten in another scripting language like Python (Lutz, 1996)

or Tcl (Ousterhout, 1994). Buckets currently exploit some of the Perl idioms, and its

possible that Python, Tcl or another similar language could easily add new capabilities.

An obvious area to explore is writing a Java (Arnold & Gosling, 1996) implementation of

buckets Ð given the proliferation of Java compilers embedded in a variety of applications

and even hardware devices. The run-time performance gains of implementing buckets in a

compiled language such as C/C++ would probably be negated by the lack of mobility

resulting from Òcompiled bucketsÓ.

Replacing CGI would be a big performance win in high-traffic DLs. One example

relevant to Perl buckets is that they could be written to use mod_perl, where the Perl

interpreter is actually embedded into the Apache http server (Stein, MacEarchern, Mui,

93

1999). This eliminates the costly overhead of CGI. Similarly, Java buckets could use

servlets (Hunter, Crawford, & Ferguson, 1998) for performance gains.

If the bucket API was available to running programs through a mechanism more

familiar and natural for applications programs, such as CORBA, then the capabilities of

buckets would be greatly expanded. It would be easier for running programs to

automatically retrieve and fill buckets as they are running without converting their

requests to http. Probably the simplest way to provide this capability would be through

a CORBA gateway that converted messages to/from bucket methods.

8.1.2 Dumb Archives

The current implementation of an archive service is a modified bucket which has

its methods extended to include basic set management functionality. While it would be

possible to add more sophisticated methods to DA, and the orthogonal approach of using

a modified bucket has an aesthetic appeal, it is also possible to implement archive services

with other technologies as well. DA functionality could be implemented using a RDBMS

or LDAP. The OAi harvesting protocol (Van de Sompel & Lagoze, 2000) is a subset of

the Dienst protocol, including only those verbs related to archive management. The

proposed collection service for Dienst (Lagoze & Fielding, 1998) could also be the

foundation for an implementation of the Smart Object, Smart Archive (SOSA) model.

8.1.3 Bucket Communication Space

While alternate archive implementations could be constructed or adapted without

requiring specific knowledge about buckets, this would be more difficult for the BCS,

since it performs services specific to buckets. A modified bucket might not be the most

efficient implementation for the BCS, but unlike for the DA, there are no obvious

candidates for alternate BCS implementations.

8.2 Extended Functionality

Contrasting with implementing the same functionality in different languages or

environments, there are a number of new functionalities that could be implemented in the

94

short term. These include using pre-defined bucket packages and elements and XML

metadata support.

8.2.1 Pre-defined Packages and Elements

Some functionality improvements could be made not through new or modified

methods, but through conventions established on the current infrastructure. One

convention already adopted was the use of a BCS_Similarity.pkg package to hold

the resulting links of the BCS similarity indexing. Other possible uses include: standard

element names for bucket checksums (entire bucket, packages or elements) to insure the

integrity of elements; standard packages (or elements) for bibliographic citation

information, possibly in multiple encodings; or standard package or element names for

previous revisions of bucket material. Conventions are likely to be adopted as need and

applications arise.

8.2.2 XML Metadata

Perhaps the most urgent improvement for buckets involves removing the RFC-

1807 historical dependency and using XML as its canonical metadata set. The current

modified RFC-1807 format dictates a generic, but inflexible two-level bucket structure.

A challenge for XML support is that until XML parsers are ubiquitously available (e.g.,

included in the Perl standard library), the bucket will have to internally be able to parse

XML files. Switching to XML should allow the modeling of arbitrarily complex data

objects, and the use of a Òbucket style sheetÓ should allow the display method to more

easily change the bucket presentation without specific code changes in the ÒdisplayÓ

method itself. XML support would also allow the use of the Resource Description

Framework (RDF) (Miller, 1998). RDF would allow for greater metadata expressiveness,

facilitating the sharing of semantic metadata models within a standard framework.

Adding lightweight XML parser support, along with style sheets and generalized

handling of metadata will be a difficult task. All of this is possible, but the parser must be

compact enough to not greatly increase the bucketÕs storage requirement and not

introduce dependencies that would damage the mobility and self-sufficiency of buckets.

95

8.2.3 More Intelligence

There are a number of functions that buckets for which buckets already have

hooks in place, but have not yet been fully automated. For example, the ÒlintÓ method

can detect internal errors and misconfigurations in the bucket, but it does not yet attempt

to repair a damaged bucket. Similarly, a bucket preference could control the automatic

updating of buckets when new releases are available, while still maintaining the bucketÕs

own configuration and local modifications. The updated bucket could then be tested for

correct functionality, and rolled back to a previous version if testing fails. The option of

removing people from the bucket update cycle would ease a traditional administration

burden.

Buckets could also be actively involved in their own replication and migration, as

opposed to waiting for human intervention for direction. Buckets could copy themselves

to new physical locations so they could survive physical media failures, existing either as

functioning or dormant replicates. Should the canonical bucket be ÒlostÓ somehow,

buckets could vote among themselves to establish a new priority hierarchy. Distributed

storage projects such as the Archival Intermemory (Goldberg & Yianilos, 1998) or

Internet2 Distributed Storage Infrastructure Project (Beck & Moore, 1998) could serve as

complementary technologies for implementing migratory buckets.

8.3 Security, Authentication and Terms & Conditions

While every effort has been made to make buckets as secure and safe as possible, a

fullÐscale investigation by an independent party has not been performed. A first level of

investigation would be in attacking the buckets themselves, to determine if the buckets

could be damaged, made to perform actions prohibited by their T&C files, or otherwise be

compromised. A second level of investigation would be examining if buckets could be

compromised through side effects resulting from attacks on other services. Currently,

buckets have no line of defense if the http server or the system software itself is attacked.

Having buckets employ some sort of encryption on their files that is decoded

dynamically would offer a second level of security, making the buckets truly opaque data

96

objects that could withstand at least some level of attack if the system software was

compromised.

Authentication is currently done through the standard http procedures, relying on

the server to correctly set the value of REMOTE_ADDR, REMOTE_HOST, and

REMOTE_USER. Authentication alternatives using Kerberos (Steiner, Neuman, &

Schiller, 1988), MD5 (Rivest, 1992), or X.509 (CCIT, 1998) should be explored so

buckets can fit into a variety of large-scale authentication schemes in use at various

facilities.

The T&C model used now is simple, and does not allow for complex expressions,

especially nesting of directives. For example, a display.tc file could contain:

user:nelson
user:maly
host:.*.larc.nasa.gov
host:.*.cs.odu.edu
package:datasets.pkg
package:software.pkg

The above imposes all the user and host restrictions on both packages. There is

currently no way to have different restrictions on different packages or elements within a

single T&C file. XML is a natural format to implement the upgraded T&C files, so that a

T&C file could be constructed to easily describe the hierarchy and relationship of the

desired T&C. An example would look something like:

<?xml version=Ó1.0Ó?>
<package name=Ódatasets.pkgÓ>

<user name=ÓnelsonÓ\>
<host name=Ó.*.larc.nasa.govÓ\>

</package>
<package name=Ósoftware.pkgÓ>

<user name=ÓmalyÓ\>
<host name=Ó.*.cs.odu.eduÓ\>

</package>

97

8.4 New Applications

Buckets provide a base level of functionality that is immediately useful.

However, reflection on the capabilities buckets provide soon causes one to think of the

additional capabilities that buckets could provide in the future.

8.4.1 Discipline-Specific Buckets

Buckets are currently not specific to any discipline; they have a generic Òone-size-

fits-allÓ approach. While this is attractive for the first generation of buckets since it

excludes no disciplines, it also does nothing to exploit assumptions and extended features

of a specific discipline. Intuitively, an earth science bucket could have different

requirements and features than a computational science bucket. Given a scientific

discipline, it could be possible to define special data structures and even special methods

or method arguments for the data, such as geo-spatial arguments retrieving data from

earth-science buckets or compilation services for a computational science bucket.

Generalized XML support in the bucket (discussed above) would simplify

tailoring buckets to different ontologies. Buckets could begin as generic buckets, then

acquire specific ÒskinsÓ (in computer-game parlance) that would dictate their look and feel

as well as their functionality.

8.4.2 Usage Analysis

There are several DL projects that focus on determining the usage patterns of their

holdings and dynamically arranging the relationships within the DL holdings based on

these patterns (Bollen & Heylighen, 1997; Rocha, 1999). All of these projects are similar

in that they extract usage patterns of passive documents, either examining the log files of

the DL, or instrumenting the interface to the DL to monitor user activity, or some hybrid

of these approaches. An approach that has not been tried is for the objects themselves to

participate in determining the usage patterns, perhaps working in conjunction with

monitors and log files. Since the buckets are executable code, it is possible to not just

instrument the resource discovery mechanisms, but the archived objects also. We have

98

experience instrumenting buckets to extract additional usage characteristics, but we have

not combined this strategy with that of the other projects.

8.4.3 Software Reuse

Buckets could have an impact in the area of software reuse as well. If a bucket

stores code, such as a solver routine, it would not have to be limited to a model where

users extract the code and link it into their application, but rather the bucket could

provide the service, and be accessible through remote procedure call (RPC)Ðlike

semantics. Interfaces between distributed computing managers such as Netsolve

(Casanova & Dongarra, 1998) or NEOS (Czyzyjk, Mesnier, & More) and Òsolver

bucketsÓ could be built, providing simple access to the solver buckets from running

programs. Data, and the routines to derive and manipulate it, could reside in the same

bucket in a DL. This would likely be tied with a discipline specific application, such as a

bucket having a large satellite image and a method for dynamically partitioning and

disseminating portions of the data.

Or users could temporarily upload data sets into the bucket to take advantage of a

specialized solver resident within the bucket without having to link it into their own

program. This would be especially helpful if the solver had different system

requirements, and it could not easily be hosted on a userÕs own machine. However, the

traditional model of Òdata resides in the library; analysis and manipulation occurs outside

the libraryÓ can be circumvented by making the archived objects also be computational

objects.

99

CHAPTER NINE
RESULTS AND CONCLUSIONS

Buckets were born of our experience in creating, populating and maintaining

several production DLs for NASA. The users of NASA DLs repeatedly wanted access

to data types beyond that of the technical publication, and the traditional publication

systems and the digital systems that automated them were unable to adequately address

their needs. Instead of creating a raft of competing, Òseparate-but-equalÓ DLs to contain

the various information types, a container object was created capable of capturing and

preserving the relationship between any number of arbitrary data types.

Buckets are aggregative, intelligent, WWW-accessible digital objects that are

optimized for publishing in DLs. Buckets implement the philosophy that information

itself is more important than the DL systems used to store and access information.

Buckets are designed to imbue the information objects with certain responsibilities, such

as the display, dissemination, protection and maintenance of its contents. As such,

buckets should be able to work with many DL systems simultaneously, and minimize or

eliminate the necessary modification of DL systems to work with buckets. Ideally,

buckets should work with everything and break nothing. This philosophy is formalized

in the SODA (Smart Object, Dumb Archive) DL model. The objects become ÒsmarterÓ at

the expense of the archives (who become ÒdumberÓ), as functionalities generally

associated with archives are moved into the data objects themselves. This shift in

responsibilities from the archive into the buckets results in a greater storage and

administration overhead, but these overheads are small in comparison to the great

flexibility that buckets bring to DLs.

This research has successfully met the objectives as stated in Chapter Two. First,

the concept of ÒbucketsÓ was introduced, which is the collection of mechanisms and

protocols for aggregating and mobilizing content and services on the content. A well-

100

defined bucket API (Appendix B) is the result of previous DL experience and study of

the bucket concept. Secondly, a reference implementation of buckets was developed that

is written in Perl that uses http and CGI mechanisms for transport of bucket messages.

This reference implementation fully implements the bucket API. Other research projects

are investigating implementing the bucket API using other technologies, including Java

servlets and the Oracle RDBMS. Lastly, the bucket concept and the Perl-based reference

implementation were demonstrated in a variety of application and DL deployments.

Research project buckets, university class buckets, and traditional STI publication

buckets were created. STI publication buckets were demonstrated in great numbers in the

NCSTRL+ and UPS experimental DLs. To facilitate the adoption of buckets, other

projects have introduced support tools for buckets, most notably a Creation Tool,

Management Tool and Administration Tool.

Buckets have demonstrated their flexibility in a number of ways. First, for the

UPS project Òlight-weight bucketsÓ emerged as a useful variation of buckets and it was

easy to augment buckets with value-added services such as the SFX reference linking

service, and then later similarity matching links. The extensibility of buckets was further

demonstrated when the creation of archive services (DA) and the Bucket Communication

Space were implemented using modified buckets. Since any ordinary bucket could be

turned into a DA or BCS bucket through a well-defined series of transformations, this

approach showed the orthogonality of buckets in a variety of applications. Buckets are

general purpose, stand-alone, WWW-accessible DL workhorses.

There are a number of projects that have similar aggregation goals as buckets.

Some are from the DL community, and others are from e-commerce and computational

science. Most do not have the SODA-inspired motivation of freeing the information

object from the control of a single server. The mobility and independence of buckets are

not seen in other DL projects. Most DL projects that focus on intelligence or agency are

focused on aids to the DL user or creator; the intelligence is machine-to-human based.

101

Buckets are unique because the information objects themselves are intelligent, providing

machine-to-machine (or, bucket-to-bucket) intelligence.

Buckets are already having a significant impact in how NASA and other

organizations such as Los Alamos National Laboratory, Air Force Research Laboratory,

Old Dominion University, and the NCSTRL steering committee are designing their next

generation DLs. The interest in buckets has been high, and every feature introduced

seems to raise several additional areas of investigation for new features and applications.

First and most important, the creation of high quality tools for bucket creation,

management and maintenance in a variety of application scenarios is absolutely necessary.

Without tools, buckets will not be widely adopted. Other short-term areas of

investigation include optimized buckets, alternate implementations of buckets, discipline-

specific buckets, XML support, and extending authentication support to include a wider

variety of technologies. Long-range plans include significant utilization of bucket

mobility and bucket intelligence, including additional features in the Bucket

Communication Space. Buckets, through aggregation, intelligence, mobility, self-

sufficiency, and heterogeneity, provide the infrastructure for information object

independence. The truly significant applications of this new breed of information objects

remain undiscovered.

102

REFERENCES

Adler, S., Berger, U., Bruggemann-Klein, A., Haber, C. Lamersdorf, W., Munke, M.,
Rucker, S. & Spahn, H. (1998). Grey literature and multiple collections in
NCSTRL. In A. Barth, M. Breu, A. Endres & A. de Kemp (eds.), Digital libraries
in computer science: the MeDoc approach (pp. 145-170), Berlin: Springer.

Andreoni, A., Bruna Baldacci, M., Biagioni, S., Carlesi, C., Castelli, D., Pagano, P. &
Peters, C. (1998). Developing a European technical reference digital library. In S.
Abiteboul & A.-M. Vercoustre (eds.), Research and advanced technology for
digital libraries, third European conference, ECDL Õ99 (pp. 343-362), Berlin:
Springer.

Arms, W. A. (1999). Preservation of scientific serials: three current examples. Journal of
Electronic Publishing, 5(2). Available at http://www.pres.umich.edu/jep/05-
02/arms.html

Arnold, K. J., & Gosling, J. (1996). The Java programming language. Reading, MA:
Addison-Wesley.

Baker, B. S. (1995a). On finding duplication and near-duplication in large software
systems. Proceedings of the second IEEE working conference on reverse
engineering (pp. 86-96), Toronto, Canada. Available at http://cm.bell-
labs.com/cm/cs/doc/95/2-bsb-3.pdf

Baker, M. (1995b). Cluster computing review. Syracuse University Technical Report
NPAC SCCS-748. Available at
http://www.npac.syr.edu/techreports/html/0700/abs-0748.html

Beck, M. & Moore, T. (1998). The Internet2 distributed storage infrastructure project:
an architecture for Internet content channels. Computer Networking and ISDN
Systems, 30(22-23), 2141-2148. Available at http://dsi.internet2.edu/pdf-docs/i2-
chan-pub.pdf

Bennington, J. (1952). The integration of report literature and journals. American
Documentation, 3(3), 149-152.

Bennion, B. C. (1994, February/March). Why the science journal crisis? ASIS Bulletin,
25-26.

103

Berners-Lee, T., Cailliau, R., Groff, J.-F., & Pollermann B. (1992).World-Wide Web: the
information universe. Electronic Networking: Research, Applications and Policy,
2(1), 52-58.

Birmingham, W. P. (1995). An agent-based architecture for digital libraries. D-Lib
Magazine, 1(7) July 1995. http://www.dlib.org/dlib/July95/07birmingham.html

Bollen, J. & Heylighen F. (1997). Dynamic and adaptive structuring of the World Wide
Web based on user navigation patterns. Proceedings of the Flexible Hypertext
Workshop (pp. 13-17), Southhampton, UK. Available at
http://www.c3.lanl.gov/~jbollen/pubs/Bollen97.htm

Bookstein, A. & Swanson, D. R. (1974). Probabilistic models for automatic indexing.
Journal of the American Society for Information Science, 25, 312-319.

Borenstein, N. & Freed, N. (1993). MIME (multipurpose Internet mail extensions) part
one: mechanisms for specifying and describing the format of Internet message
bodies. Internet RFC-1521. Available at ftp://ftp.isi.edu/in-notes/rfc1521.txt

Brenner, S. (2000). The cgi-lib.pl homepage. Available at http://cgi-lib.berkeley.edu/

Brockschmidt, K. (1995). Inside OLE 2. Redmond, WA: Microsoft Press.

Carriero, N. & Gelernter, D. (1989). Linda in context. Communications of the ACM,
32(4), 444-458.

Casanova, H. & Dongarra, J. (1998). Applying NetsolveÕs network-enabled solver. IEEE
Computational Science & Engineering, 5(3), pp. 57-67.

CCITT (1998). The directory authentication framework. CCITT Recommendation
X.509.

Crespo, A. & Garcia-Molina, H. (1997). Awareness services for digital libraries. In C.
Peters & C. Thanos (eds.), Research and advanced technology for digital libraries,
first European conference, ECDL Õ97 (pp. 147-171), Berlin: Springer.

Croft, W. B. & Harper, D. J. (1979). Using probabilistic models of document retrieval
without relevance information. Documentation, 35(4), 285-295.

Cruz, J. M. B. & Krichel, T. (1999). Cataloging economics preprints: an introduction to
the RePEc project. Journal of Internet Cataloging, 3(2-3).

104

Czyzyk, J., Mesnier, M. P. & More, J. J. (1998). The NEOS solver. IEEE
Computational Science & Engineering, 5(3), pp. 68-75.

Daniel, R. & Lagoze, C. (1997). Distributed active relationships in the Warwick
framework. Proceedings of the second IEEE metadata workshop, Silver Spring,
MD.

Davis, J. R. & Lagoze, C. (1994). A protocol and server for a distributed digital technical
report library. Cornell University Computer Science Technical Report TR94-
1418. Available at
http://ncstrl.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.cornell/TR94-1418

Davis, J. R., Fielding, D., Lagoze, C. & Marisa, R. (2000). The Santa Fe convention: the
Open Archives Dienst subset. Available at
http://www.openarchives.org/sfc/sfc_dienst.htm

Davis, J. R. & Lagoze, C. (2000). NCSTRL: design and deployment of a globally
distributed digital library. Journal of the American Society for Information
Science, 51(3), 273-280.

Esler, S. L. & Nelson, M. L. (1998). Evolution of scientific and technical information
distribution. Journal of the American Society for Information Science, 49(1), 82-
91. Available at http://techreports.larc.nasa.gov/ltrs/PDF/1998/jp/NASA-98-jasis-
sle.pdf

Fielding, R., Gettys, J., Mogul J. C., Frystyk, H., Masinter, L., Leach, P. & Berners-Lee,
T. (1999). Hypertext transfer protocol Ð HTTP/1.1. Internet RFC-2616.
Available at ftp://ftp.isi.edu/in-notes/rfc2616.txt

Finin, T., Fritzson, R., McKay, D. & McEntire, R. (1994). KQML as an agent
communication language. Proceedings of the third international conference on
information and knowledge management (pp. 447-455), Gaithersburg, MD.
Available at http://www.cs.umbc.edu/kqml/papers/kqml-acl.ps

Fox, E. A., Eaton, J. L., McMillan, G., Kipp, N. A., Mather, P., McGonigle, T.,
Schweiker, W. & DeVane, Brian. Networked digital library of theses and
dissertations. D-Lib Magazine, 3(9). Available at
http://www.dlib.org/dlib/september97/theses/09fox.html

Frakes, W. B. & Baeza-Yates, R. (1992). Information retrieval: data structures &
algorithms. Upper Saddle River, NJ: Prentice-Hall.

105

French, J. C., Powell, A. L., Schulman, E. & Pfaltz, J. L. (1997). Automating the
construction of authority files in digital libraries: a case study. In C. Peters & C.
Thanos (eds.), Research and advanced technology for digital libraries, first
European conference, ECDL Õ97 (pp. 55-71), Berlin: Springer.

Ginsparg, P. (1994). First steps towards electronic research communication. Computers
in Physics, 8, 390-396.

Goldberg, A. V. & Yianilos, P. N. (1998). Towards an archival intermemory. Proceedings
of the IEEE forum on research and technology advances in digital libraries (pp.
147-156), Santa Barbara, CA.

Gray, D. E. (1953). Organizing and servicing unpublished reports. American
Documentation 4(3), 103-115.

Griffin, S. M. (1999). Digital Library Initiative Ð phase 2. D-Lib Magazine, 5/(7-8).
Available at http://www.dlib.org/dlib/july99/07griffin.html

Griffiths, J.-M. & King, D. W. (1993). Special libraries: increasing the information edge.
Washington, DC: Special Libraries Association.

Halpern, J. Y. & Lagoze, C. (1999). The Computing Research Repository: promoting the
rapid dissemination and archiving of computer science research. Proceedings of
the fourth ACM conference on digital libraries (pp. 3-11), Berkeley, CA.

Harman, D. (1992). Ranking algorithms. In W. B. Frakes & R. Baeza-Yates (Eds.),
Information retrieval: data Structures & algorithms (pp. 363-392), Upper Saddle
River, NJ: Prentice-Hall.

Harnad, S. (1997). How to fast-forward serials to the inevitable and the optimal for
scholars and scientists. Serials Librarian, 30, 73-81. Available at
http://www.cogsci.soton.ac.uk/~harnad/Papers/Harnad/harnad97.learned.serials.ht
ml

Henderson, A. (1999). Information science and information policy: the use of constant
dollars and other indicators to manage research investments. Journal of the
American Society for Information Science, 50(4), 366-379.

Hunter, J., Crawford, W. & Ferguson, P. (1998). Java servlet programming. Sebastopol
CA: OÕReilly & Associates.

Image Alchemy (2000). Available at http://www.handmadesw.com/his/specs.html

106

ImageMagick (2000). Available at
http://www.wizards.dupont.com/cristy/ImageMagick.html

Jacobsen, D. (1996). bp, a Perl bibliography package. Available at
http://www.ecst.csuchico.edu/~jcabosd/bib/bp/

Kahle, B., Morris, H., Davis, F., Tiene, K., Hart, C., & Palmer, R. (1992). Wide area
information servers: an executive information system for unstructured files,
Electronic Networking:ÊResearch, Applications, and Policy, 2(1), 59-68.

Kahle, B. (1997). Preserving the Internet. Scientific American, 264(3).

Kahn, Robert E. (1995). An introduction to the CS-TR project. Available at
http://www.cnri.reston.va.us/home/describe.html

Kahn, R. & Wilensky, R. (1995) A framework for distributed digital object services.
cnri.dlib/tn95-01. Available at
http://www.cnri.reston.va.us/home/cstr/arch/k-w.html

Kaplan, J. A. & Nelson, M. L. (1994). A comparison of queueing, cluster and distributed
computing systems. NASA Technical Memorandum 109025. Available at
http://techreports.larc.nasa.gov/ltrs/PDF/tm109025.pdf

Karpovich, J. F., Grimshaw, A. S. & French, J. C. (1994). Extensible file systems (ELFS):
an object-oriented approach to high performance file I/O. Proceedings of the ninth
annual conference on object-oriented programming systems, languages and
applications (pp. 191-204), Portland, OR.

Kohl, U., Lotspiech, J. & Kaplan, M. A. (1997). Safeguarding digital library contents and
users. D-Lib Magazine, 3(9). Available at
http://www.dlib.org/dlib/septemeber97/ibm/lotspiech.html

Knuth, D. E. (1986). The TeXbook. Reading, MA: Addison-Wesley.

Lagoze, C. & Ely, D. (1995). Implementation issues in an open architectural framework
for digital object services. Cornell University Computer Science Technical Report,
TR95-1540. Available at
http://ncstrl.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.cornell/TR95-1540

Lagoze, C., Shaw, E., Davis, J. R., & Krafft, D. B. (1995). Dienst: implementation
reference manual. Cornell University Technical Report TR95-1514. Available at
http://ncstrl.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.cornell/TR95-1514

107

Lagoze, C., Lynch C. A., & Daniel, R. (1996). The Warwick framework: a container
architecture for aggregating sets of metadata. Cornell University Computer
Science Technical Report TR-96-1593. Available at
http://ncstrl.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.cornell/TR96-1593

Lagoze, C. & Fielding, D. (1998). Defining collections in distributed digital libraries. D-
Lib Magazine, 4(11). Available at
http://www.dlib.org/dlib/november98/lagoze/11lagoze.html

Lagoze, C. & Payette, S. (1998). An infrastructure for open-architecture digital libraries.
Cornell University Computer Science Technical Report TR98-1690. Available at
http://ncstrl.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.cornell/TR98-1690

Lasher, R. & Cohen, D. (1995). A format for bibliographic records. Internet RFC-1807.
Available at ftp://ftp.isi.edu/in-notes/rfc1807.txt

Lawrence, S., Bollacker, K. & Giles, C. L. (1999). Distributed error correction.
Proceedings of the fourth ACM conference on digital libraries (p. 232), Berkeley,
CA.

Lawrence, S. & Giles, C. L. (1998). Searching the World Wide Web. Science, 280, 98-
100. Available at http://www.neci.nj.nec.com/~lawrence/science98.html

Lesk, M. E. (1978). Some applications of inverted indexes on the UNIX system. Bell
Laboratories Computing Science Technical Report 69.

Lesk, M. E. (1997). Practical digital libraries: books, bytes & bucks. San Francisco, CA:
Morgan-Kaufmann Publishers.

Lesk, M. E. (1999). Perspectives on DLI2 - growing the field. D-Lib Magazine, 5(7-8).
Available at http://www.dlib.org/dlib/july99/07lesk.html

Lutz, M. (1996). Programming python. Sebastopol CA: OÕReilly & Associates.

Marazakis, M., Papadakis, D. & Papadakis, S. A. (1998). A framework for the
encapsulation of value-added services in digital objects. In C. Nikolaou & C.
Stephanidis (eds.) Research and advanced technology for digital libraries, second
European conference, ECDL Õ98 (pp. 75-94). Berlin: Springer.

Maly, K., French, J., Fox, E. & Selman, A. (1995). Wide area technical report service:
technical reports online. Communications of the ACM, 38(4), 45.

108

Maly, K., Nelson, M. L., & Zubair, M. (1999). Smart objects, dumb archives: a user-
centric, layered digital library framework. D-Lib Magazine, 5(3). Available at
http://www.dlib.org/dlib/march99/maly/03maly.html

McGrath, R. E. (1996). Performance of several Web server platforms. National Center
for Supercomputing Applications Technical Report. Available at
http://www.ncsa.uiuc.edu/InformationServers/Performance/Platforms/report.html

Miller, E. (1998). An introduction to the Resource Description Framework. D-Lib
Magazine, 4(5). Available at http://www.dlib.org/dlib/may98/miller/05miller.html

Monostori, K., Zaslavsky, A. & Schmidt, H. (2000). Document overlap detection
systems for distributed digital libraries. Proceedings of the fifth ACM conference
on digital libraries (pp. 226-227), San Antonio, TX.

Mori, R. & Kawahara, M. (1990). Superdistribution: the concept and the architecture.
Transactions of the IEICE, E73(7). Available at
http://www.virtualschool.edu/mon/ElectronicProperty/MoriSuperdist.html

NASA (1998). NASA Scientific and Technical Information (STI) program plan.
Available at http://stipo.larc.nasa.gov/splan/

Nebel, E. & Masinter, L. (1995). Form-based file upload in HTML. Internet RFC-1867.
Available at ftp://ftp.isi.edu/in-notes/rfc1867.txt

Nelson, C. (1995). OpenDoc and its architecture. The X Resource, 1(13), 107-126.

Nelson, M. L. & Gottlich, G. L. (1994) Electronic document distribution: design of the
anonymous FTP Langley technical report server, NASA-TM-4567, March 1994.
Available at http://techreports.larc.nasa.gov/ltrs/PDF/tm4567.pdf

Nelson, M. L., Gottlich, G. L., & Bianco, D. J. (1994). World Wide Web implementation
of the Langley technical report server. NASA TM-109162. Available at
http://techreports.larc.nasa.gov/ltrs/PDF/tm109162.pdf

Nelson, M. L., Gottlich, G. L., Bianco, D. J., Paulson, S. S., Binkley, R. L., Kellogg, Y.
D., Beaumont, C. J., Schmunk, R. B., Kurtz, M. J., Accomazzi, A., & Syed, O.
(1995). The NASA technical report server. Internet Research: Electronic Network
Applications and Policy, 5(2), 25-36. Available at
http://techreports.larc.nasa.gov/ltrs/papers/NASA-95-ir-p25/NASA-95-ir-
p25.html

109

Nelson, M. L. & Esler, S. L. (1997). TRSkit: a simple digital library toolkit. Journal of
Internet Cataloging, 1(2), 41-55. Available at
http://techreports.larc.nasa.gov/ltrs/PDF/1997/jp/NASA-97-jic-mln.pdf

Nelson, M. L., Maly, K., Shen, S. N. T., & Zubair, M. (1998). NCSTRL+: adding multi-
discipline and multi-genre support to the Dienst protocol using clusters and
buckets. Proceedings of the IEEE forum on research and technology advances in
digital libraries (pp. 128-136), Santa Barbara, CA. Available at
http://techreports.larc.nasa.gov/ltrs/PDF/1998/mtg/NASA-98-ieeedl-mln.pdf

Nelson, M. L. (1999). A digital library for the National Advisory Committee for
Aeronautics. NASA/TM-1999-209127. Available at
http://techreports.larc.nasa.gov/ltrs/PDF/1999/tm/NASA-99-tm209127.pdf

Nelson, M. L., Maly, K., Croom, D. R., & Robbins, S. W. (1999). Metadata and buckets
in the smart object, dumb archive (SODA) Model, Proceedings of the third IEEE
meta-data conference, Bethesda, MD. Available at
http://www.computer.org/proceedings/meta/1999/papers/53/mnelson.html

Ockerbloom, J. (1998). Mediating among diverse data formats. Ph.D. Dissertation,
Carnegie Mellon University, CMU-CS-98-102. Available at
http://reports-archive.adm.cs.cmu.edu/anon/1998/abstracts/98-102.html

Odlyzko, A. M. (1995). Tragic loss or good riddance? The impending demise of
traditional scholarly journals. International Journal of Human-Computer Studies,
42, 71-122.

Olson, M. A., Bostic, K. & Seltzer, M. (1999). Berkeley DB. Proceedings of the 1999
USENIX annual technical conference, Monterey, CA.

Ousterhout, J. K. (1994). Tcl and the Tk toolkit. Reading, MA: Addison-Wesley.

Paepcke, A. (1996). Digital libraries: searching is not enough. D-Lib Magazine 2(5).
Available at http://www.dlib.org/dlib/may96/stanford/05paepcke.html

Paepcke, A. (1997). InterBib: bibliography-related services. Available at http://www-
diglib.stanford.edu/~testbed/interbib/

Paskin, N. (1999). DOI: current status and outlook. D-Lib Magazine, 5(5). Available at
http://www.dlib.org/dlib/may99/05paskin.html

110

Patterson, David A. (1994). How to have a bad career in research/academia. Keynote
Address at the First Symposium on Operating System Design and
Implementation, Monterey, CA. Available at
http://http.cs.berkeley.edu/~patterson/talks/bad.ps

Phelps, T. A. & Wilensky, R. (2000). Multivalent documents. Communications of the
ACM, 43(6), 83-90.

Powell, A. L. & French, J. C. (2000). Growth and server availability of the NCSTRL
digital library. Proceedings of the fifth ACM conference on digital libraries (pp.
264-265), San Antonio, TX. Available at
http://www.cs.viriginia.edu/~cyberia/papers/DL00.pdf

Rasmussen, E. (1992). Clustering algorithms. In W. B. Frakes & R. Baeza-Yates (Eds.),
Information retrieval: data structures & algorithms (pp. 363-392), Upper Saddle
River, NJ: Prentice-Hall.

Rivest, R. (1992). The MD5 message-digest algorithm. Internet RFC-1321. Available at
ftp://ftp.isi.edu/in-notes/rfc1321.txt

Rocha, L. M. (1999). TalkMine and the adaptive recommendation project. Proceedings
of the fourth ACM conference on digital libraries (pp. 242-243), Berkeley, CA.
Available at http://www.c3.lanl.gov/~rocha/dl99.html

Roper, D. G., McCaskill, M. K., Holland, S. D., Walsh, J. L., Nelson, M. L., Adkins, S.
L., Ambur, M. Y., & Campbell, B. A. (1994). A strategy for electronic
dissemination of NASA Langley publications. NASA TM-109172. Available at
http://techreports.larc.nasa.gov/ltrs/PDF/tm109172.pdf

Rothenberg, J. (1995). Ensuring the longevity of digital documents. Scientific American,
272(1), 42-47.

Salampsasis, M., Tait, J. & Hardy, C. (1996). An agent-based hypermedia framework for
designing and developing digital libraries. Proceedings of the third forum on
research and technology advances in digital libraries (pp. 5-13), Washington DC.

Salton, G. & Lesk, M. E. (1968). Computer evaluation of indexing and text processing,
Journal of the Association of Computing Machinery, 15(1), 8-36.

Sanchez, J. A., Legget, J. J., & Schnase, J. L. (1997). AGS: introducing agents as services
provided by digital libraries. Proceedings of the second ACM international
conference on digital libraries (pp. 75-82), Philadelphia, PA.

111

Sanchez, J. A., Lopez, C. A.., & Schnase, J. L. (1998). An agent-based approach to the
construction of floristic digital libraries. Proceedings of the third ACM
international conference on digital libraries (pp. 210-216), Pittsburgh, PA.

Schatz, B., & Chen, H. (1996). Building large-scale digital libraries. IEEE Computer,
29(5), 22-26.

Scherlis, W. L. (1996). Repository interoperability workshop: towards a repository
reference model. D-Lib Magazine, 2(10). Available at
http://www.dlib.org/october96/workshop/10scherlis.html

Scott, E. W. (1953). New patterns in scientific research and publication. American
Documentation, 4(3), 90-95.

Shafer, K., Weibel, S., Jul, E. & Fausey, J. (1996). Introduction to persistent uniform
resource locators. Proceedings of INET 96, Montreal, Canada. Available at
http://purl.oclc.org/OCLC/PURL/INET96

Shivakumar, N. & Garcia-Molina, H. (1995). SCAM: a copy detection mechanism for
digital documents. Proceedings of the second international conference in theory
and practice of digital libraries (pp. 155-163), Austin, TX.

Shklar, L., Makower, D., Maloney, E. & Gurevich (1998). An application development
framework for the virtual Web. Proceedings of the fourth international conference
on information systems, analysis, and synthesis, Orlando, FL. Available at
http://www.cs.rutgers.edu/~shklar/isas98/

Sibert, O., Bernstein, D. & Van Wie, D. (1995). DigiBox: a self-protecting container for
information commerce. Proceedings of the first USENIX workshop on electronic
commerce, New York, NY.

Sobieski, J. (1994). A proposal: how to improve NASA-developed computer programs.
NASA CP-10159, pp. 58-61.

Sparck Jones, K. (1972). A statistical interpretation of term specificity and its
application in retrieval. Journal of Documentation, 28(1), 11-20.

Sparck Jones, K. (1979). Experiments in relevance weighting of search terms.
Information Processing and Management, 15(3), 133-144.

Stern, I. (1995). Scientific data format information FAQ. Available at
http://www.faqs.org/faqs/sci-data-formats/

112

Stein, L. (1998). Official guide to programming with CGI.pm. New York, NY: John
Wiley & Sons.

Stein, L., MacEachern, D. & Mui, L. (1999). Writing Apache modules in Perl and C: the
Apache API and mod_perl. Sebastopol CA: OÕReilly & Associates.

Steiner, J. G., Neuman, C. & Schiller, J. I. (1988). Kerberos: an authentication service for
open network systems. Proceedings of the winter 1988 USENIX conference (pp.
191-202), Dallas, TX.

Sullivan, W. T. III, Werthimer, D., Bowyer, S., Cobb, J., Gedye, D. & Anderson, D.
(1997). A new major SETI project based on Project Serendip data and 100,000
personal computers. In C.B. Cosmovici, S. Bowyer, & D. Werthimer (Eds.),
Astronomical and biochemical origins and the search for life in the universe,
Bologna, Italy: Editrice Compositori. Available at
http://setiathome.berkeley.edu/woody_paper.html

Sun Microsystems, Inc. (1999). The maximum number of directories allowed on Solaris
is limited by the LINK_MAX parameter. InfoDoc # 19895.

Sun, S. X. & Lannom, L. (2000). Handle system overview. Internet Draft. Available at
http://www.ietf.org/internet-drafts/draft-sun-handle-system-04.txt

Task Force on Archiving of Digital Information (1996). Preserving digital information.
Available at http://www.rlg.org/ArchTF/

Tiffany, M. E. & Nelson, M. L. (1998). Creating a canonical scientific and technical
information classification system for NCSTRL+. NASA/TM-1998-208955.
Available at
http://techreports.larc.nasa.gov/ltrs/PDF/1998/tm/NASA-98-tm208955.pdf

United States General Accounting Office (1990). NASA is not properly safeguarding
valuable data from past missions, GAO/IMTEC-90-1.

Van de Sompel, H. & Hochstenbach, P. (1999). Reference linking in a hybrid library
environment: part 2: SFX, a generic linking service. D-Lib Magazine 5(4).
Available at
http://www.dlib.org/dlib/april99/van_de_sompel/04/van_de_sompel-pt2.html

113

Van de Sompel, H., Krichel, T., Nelson, M. L., Hochstenbach, P., Lyapunov, V. M.,
Maly, K., Zubair, M., Kholief, M., Liu, X. & OÕ Connell, H. (2000a). The UPS
prototype: an experimental end-user service across e-print archives. D-Lib
Magazine, 6(2). Available at
http://www.dlib.org/dlib/february00/vandesompel-ups/02vandesompel-ups.html

Van de Sompel, H., Krichel, T., Nelson, M. L., Hochstenbach, P., Lyapunov, V. M.,
Maly, K., Zubair, M., Kholief, M., Liu, X. & OÕ Connell, H. (2000b). The UPS
prototype project: exploring the obstacles in creating across e-print archive end-
user service, Old Dominion University Computer Science Technical Report TR
2000-01. Available at
http://ncstrl.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.odu_cs/TR_2000_01

Van de Sompel, H. & Lagoze, C. (2000). The Santa Fe Convention of the Open Archives
initiative. D-Lib Magazine, 6(2). Available at
http://www.dlib.org/dlib/february00/vandesompel-oai/02vandesompel-oai.html

Vickery, B. (1999). A century of scientific and technical information. Journal of
Documentation, 55(5), 476-527.

Vinoski, S. (1997). CORBA: integrating diverse applications within distributed
heterogeneous environments. IEEE Communications Magazine, 4(2), 46-55.

Wall, L., Christiansen, T. & Schwartz, R. L. (1996). Programming Perl. Sebastopol, CA:
OÕReilly & Associates, Inc.

Waugh, A., Wilkinson, R., Hills, B., & Dell�ro, J. (2000). Preserving digital information
forever. Proceedings of the fifth ACM conference on digital libraries (pp. 175-
184), San Antonio, TX.

Weibel, S., Kunze, J., Lagoze, C. & Wolfe, M. (1998). Dublin Core metadata for resource
discovery. Internet RFC-2413. Available at ftp://ftp.isi.edu/in-notes/rfc2413.txt

Yeong, W., Howes, T. & Kille, S. (1995). Lightweight directory access protocol. Internet
RFC-1777. Available at ftp://ftp.isi.edu/in-notes/rfc1777.txt

114

APPENDIX A
BUCKET VERSION HISTORY

Version Date Kilobytes Inodes Comments

Òproto bucketsÓ

of the

NACATRS

January 1996 n/a n/a Not really a bucket, but the

concept for buckets grew out

of the experiences from this

project.

version 0 July 1997 n/a n/a First digital object to be

identified as a bucket. Used

only for research purposes:

refining the bucket concept &

defining the API. Structural

design is completely different.

version 1.0 July 1998 n/a n/a complete re-write of version

0; the design of the current

buckets traces to this version.

version 1.1 August 1998 n/a n/a First implementation of the

current T&C design.

version 1.11 September

1998

n/a n/a Significant change in parsing

of metadata. Name collisions

handled.

version 1.12 September

1998

n/a n/a T&C changes.

version 1.13 October 1998 n/a n/a Fixed problems with self-

deleting buckets in version

1.12

115

version 1.2 November

1998

97 40 The first public release of

buckets. Has only a basic set

of methods and simple T&C

support. Display of metadata

is improved. Bucket more

tolerant of variations in

internal structure.

version 1.3 July 1999 118 53 Method set expanding to

influence appearance and

behavior of bucket. Packages

are locked out from http

browsing (true data hiding).

version 1.3.1 July 1999 125 58 Can now distribute different

types of metadata if they have

been pre-loaded. More

appearance/behavior methods

evolving.

version 1.3.2 July 1999 125 58 Minor bug-fix.

UPS version 1.6

(based on version

1.3.2)

October 1999 97 56 Final version of the template

used in the UPS project.

Based on the 1.3.2 template,

the UPS template was slightly

optimized for storage

efficiency, and introduced

some of the new functionality

in later bucket versions.

version 1.4 December

1999

134 62 Code factoring now possible.

Many of the appearance and

116

behavior models have been

collapsed into preferences.

ÒdisplayÓ method borrows

heavily from UPS look and

feel.

version 1.5 February

1999

145 68 ÒpackÓ and ÒunpackÓ methods

implemented to assist with

bucket mobility. ÒdisplayÓ

method can take several

arguments for customizing its

output.

version 1.5.1 February

1999

148 70 Group T&C support for IP

addresses and hostnames

added.

version 1.5.2 February

1999

149 70 Minor bug fix.

version 1.5.3 March 1999 148 70 Minor bug fixes.

version 1.5.4 March 1999 147 70 More minor bug fixes.

version 1.5.5 April 1999 143 66 Naming of metadata changed

for the ÒdisplayÓ method to

be inline with that used in the

NCSTRL+ project.

version 1.6 April 1999 144 68 Buckets now BCS aware,

especially with respect to

metadata conversion. Buckets

can now send email when

events occur. Many bug fixes

and optimizations.

117

Prior to version 1.2, source code releases were not preserved. Source code and detailed

release notes versions after 1.2 can be found at:

http://dlib.cs.odu.edu/bucket-shop/

118

APPENDIX B
BUCKET API

Method: add_element

Arguments: element_name, pkg_name, element_bib, upfile

Returned MIME Type: text/plain

Example(s): ?method=add_element&element_name=bar.pdf&

pkg_name=foo.pkg&element_bib=X&upfile=X

Discussion: Òadd_elementÓ adds a specified element to a specified

package in the bucket. Òelement_nameÓ is the name the

element will be stored as in the bucket, and Òpkg_nameÓ is

the name of the package that the element will be put into.

Òelement_bibÓ contains the RFC-1807 description of the

element, and ÒupfileÓ contains the actual file, uploaded as

described in RFC-1867 (Nebel & Masinter, 1995).

See Also: delete_element, display

119

Method: add_method

Arguments: target, upfile

Returned MIME Type: text/plain

Example(s): ?method=add_method&target=foo&upfile=X

Discussion: Òadd_methodÓ adds a method to a bucket by uploading Perl

source code into the bucket. ÒtargetÓ specifies the name of

the new method, while ÒupfileÓ contains the source code

uploaded as described in RFC-1867. The bucket performs no

error checking on the uploaded source code; if the user can

satisfy the T&C for Òadd_methodÓ, it is assumed they know

what they are doing.

See Also: delete_method, list_methods

120

Method: add_package

Arguments: pkg_name, pkg_bib

Returned MIME Type: text/plain

Example(s): ?method=add_package&pkg_name=foo.pkg&pkg_bib=X

Discussion: Òadd_packageÓ creates a new package in the bucket. On a

subsequent ÒdisplayÓ of the bucket, the new package will

appear at the end of the list of previous packages.

Òpkg_nameÓ is the name of the package to be added. If the

package name does not include an extender of Ò.pkgÓ, one will

be added. Òpkg_bibÓ contains the RFC-1807 description of

the package.

See Also: delete_package

121

Method: add_principal

Arguments: principal, passwd, epasswd

Returned MIME Type: text/plain

Example(s): ?method=add_principal&principal=bob&passwd=secret

?method=add_principal&principal=bob&epasswd=4Rals3Q

Discussion: Òadd_principalÓ adds a user with a password to the bucketÕs

internal list of recognized principals that can be named in its

T&C files. ÒprincipalÓ is the name of the user to be defined.

ÒpasswdÓ is the clear text version of the password, and

ÒepasswdÓ is the encrypted (with Unix crypt(3)) version of

the password. Only one of the two password arguments

needs to be supplied.

See Also: delete_principal, list_principal

122

Method: add_tc

Arguments: target, value

Returned MIME Type: text/plain

Example(s): ?method=add_tc&target=delete_bucket&value=X

Discussion: Òadd_tcÓ uploads (as described in RFC-1867) a T&C file that

defines who can invoke the method named by ÔtargetÓ.

ÒvalueÓ contains the actual file contents; the syntax of which

is described in chapter three.

See Also: delete_tc, list_tc

123

Method: delete_bucket

Arguments: none

Returned MIME Type: text/plain

Example(s): ?method=delete_bucket

Discussion: Òdelete_bucketÓ deletes the entire bucket Ð no confirmation is

requested. This is a very dangerous method, and because of

this it is disabled in the standard bucket distribution.

See Also: delete_element, delete_package

124

Method: delete_element

Arguments: element_name, pkg_name

Returned MIME Type: text/plain

Example(s): ?method=delete_element&element_name=bar.pdf&pkg_name

=foo.pkg

Discussion: Òdelete_elementÓ deletes the element named by

Òelement_nameÓ and Òpkg_nameÓ. It will also delete the

RFC-1807 metadata associated with the named element.

See Also: add_element, delete_package

125

Method: delete_log

Arguments: log

Returned MIME Type: text/plain

Example(s): ?method=delete_log&log=access.log

Discussion: Òdelete_logÓ deletes the log named by the argument ÒlogÓ.

This method is intended to be used by tools or cron jobs to

autoally harvest and then prune bucket logs, which would

otherwise grow without bound.

See Also: get_log, list_logs

126

Method: delete_method

Arguments: target

Returned MIME Type: text/plain

Example(s): ?method=delete_method&target=add_principal

Discussion: Òdelete_methodÓ deletes the method named in ÒtargetÓ from

the bucket. Calling Òdelete_methodÓ with arguments of

Òadd_methodÓ then Òdelete_methodÓ would insure a static

bucket whose methods could not be changed through the

API.

See Also: add_method, list_methods

127

Method: delete_package

Arguments: pkg_name

Returned MIME Type: text/plain

Example(s): ?method=delete_package&pkg_name=foo.pkg

Discussion: Òdelete_packageÓ deletes the entire package named in

Òpkg_nameÓ. Any elements residing in the package will be

deleted at the same time; no confirmation will be requested.

The relevant metadata fields will be deleted as well.

See Also: add_package

128

Method: delete_principal

Arguments: principal

Returned MIME Type: text/plain

Example(s): ?method=delete_principal&principal=bob

Discussion: Òdelete_principalÓ will delete the user named by the

ÒprincipalÓ argument from the bucketÕs internal list of named

principals. The userÕs password will also be deleted.

See Also: add_principal, list_principals

129

Method: delete_tc

Arguments: target

Returned MIME Type: text/plain

Example(s): ?method=delete_tc&target=display.tc

Discussion: Òdelete_tcÓ deletes the T&C file named by ÒtargetÓ. Note

that Òedit_tcÓ functionality would be accomplished by a

Òlist_tcÓ / Òdelete_tcÓ / Òadd_tcÓ series of calls.

See Also: add_tc, list_tc

130

Method: display

Arguments: none, bold, view, sfx, redirect, pkg_name, element_name,

page, thumbnail

Returned MIME Type: text/html; other MIME types as appropriate

Example(s): ?method=display

?method=display&bold=aircraft+engine

?method=display&view=staff

?method=display&sfx=http://sfx.foo.edu/

?method=display&redirect=http://www.foo.edu/

?method=display&pkg_name=foo.pkg&element_name=bar.p

df

?method=display&pkg_name=foo.pkg&element_namebar.sca

n&page=0001.gif

?method=display&pkg_name=foo.pkg&element_namebar.sca

n&thumbnail=1

Discussion: ÒdisplayÓ is easily the most complex bucket method. When

called with no arguments, it generates an HTML human-

readable listing of the bucket contents. ÒboldÓ, ÒviewÓ, and

ÒsfxÓ can all be used to describe the normal HTML bucket

listing. ÒboldÓ takes a list of keywords that displays them in

bold during the bucket display. ÒviewÓ defines an alternate

display criteria for the bucket, which can be used to

implement role based displays. ÒsfxÓ provides the location

of a SFX server. ÒredirectÓ causes the bucket to generate an

http 302 response and redirect the browser to the specified

URL. When Òpkg_nameÓ and Òelement_nameÓ are specified,

the bucket returns the named element, and gives it a MIME

131

type based on the bucketÕs own internal listing of file

extenders and MIME types. If Òelement_nameÓ ends in

Ò.scanÓ, then either ÒpageÓ or ÒthumbnailÓ can be specified.

ÒthumbnailÓ will generate a listing of N thumbnail GIFs

which correspond to scanned pages of a document, and where

N specified by the preference Òthumbnail_incrementÓ.

ÒpageÓ shows only the large GIF of a scanned page.

See Also: none

132

Method: get_log

Arguments: log

Returned MIME Type: text/plain

Example(s): ?method=get_log&log=access.log

Discussion: Òget_logÓ returns the entire log specified in the ÒlogÓ

argument. Currently, buckets only maintain a single log by

default, but this could change in future versions. Also, local

implementations of buckets are free to implement their own

logs.

See Also: delete_log

133

Method: get_preference

Arguments: none, pref

Returned MIME Type: text/plain

Example(s): ?method=get_preference

?method=get_prefrence&pref=logging

Discussion: Òget_preferenceÓ with no arguments returns the current

values of all the buckets defined preferences. If a single

preference is specified in the argument ÒprefÓ, then only its

value is displayed.

See Also: set_preference

134

Method: get_state

Arguments: state

Returned MIME Type: text/plain; or other as appropriate

Example(s): ?method=get_state&state=approved

Discussion: Òget_stateÓ returns the value of the bucket state variable

specified in the argument ÒstateÓ. Buckets do not internally

use these state variables Ð they are for use by external tools

that wish to leave the bucket in a certain state. State

variables are of type text/plain, but they can be any MIME

type.

See Also: set_state

135

Method: id

Arguments: none

Returned MIME Type: text/plain

Example(s): ?method=id

Discussion: ÒidÓ returns the id for the bucket as specified in the RFC-

1807 ÒID::Ó metadata line.

See Also: none

136

Method: lint

Arguments: none

Returned MIME Type: text/plain

Example(s): ?method=lint

Discussion: ÒlintÓ performs a series of internal checks on the bucket.

These include: comparing the packages and elements listed in

the metadata to those physically in the bucket; verifying that

all packages are closed to http browsing; verifying that files

are writable by the http server; and comparing the URL used

to access the bucket with that expect in the metadata.

See Also: none

137

Method: list_logs

Arguments: none

Returned MIME Type: text/plain

Example(s): ?method=list_logs

Discussion: Òlist_logsÓ returns a list of all the logs defined for the bucket.

Currently, buckets only maintain a single log by default, but

this could change in future versions. Also, local

implementations of buckets are free to implement their own

logs.

See Also: delete_log, get_log

138

Method: list_methods

Arguments: none

Returned MIME Type: text/plain

Example(s): ?method=list_methods

Discussion: Òlist_methodsÓ returns a list of all the methods defined for

the bucket. This list is expected to be different for locally

modified buckets, which could add or delete methods from

the default set.

See Also: add_method, delete_method

139

Method: list_principals

Arguments: none

Returned MIME Type: text/plain

Example(s): ?method=list_principals

Discussion: Òlist_principalsÓ lists all the defined users for the bucket.

Passwords are obviously not included in the display.

See Also: add_principal, delete_principal

140

Method: list_source

Arguments: none, target

Returned MIME Type: text/plain

Example(s): ?method=list_source

?method=list_source&target=display

Discussion: Òlist_sourceÓ returns the Perl source code used by the bucket.

If no arguments are given, the source code for the Òindex.cgiÓ

is returned. Otherwise, the source code for the method

specified in the argument ÒtargetÓ is returned.

See Also: add_method, delete_method, list_methods

141

Method: list_tc

Arguments: none, target

Returned MIME Type: text/plain

Example(s): ?method=list_tc

?method=list_tc&target=display

Discussion: Òlist_tcÓ with no arguments lists all the methods for the

bucket that have T&C files and lists the file contents. If no

T&C are defined, nothing is returned. If the argument

ÒtargetÓ is supplied, Òlist_tcÓ will return only the T&C file

for the method specified by ÒtargetÓ, or nothing if no T&C

are defined for that method.

See Also: add_tc, delete_tc

142

Method: metadata

Arguments: none, format

Returned MIME Type: text/plain (or text/xml as appropriate)

Example(s): ?method=metadata

?method=metadata&format=oams

Discussion: ÒmetadataÓ invoked with no arguments returns the metadata

in RFC-1807 format. If you specify a different metadata

format in the ÒformatÓ argument, it will first look to see if

thatrmat is stored internally in the bucket, and if so determine

if it is clean. If the bucket does not have the format, or it is

dirty, it will contact the BCS and attempt to convert the

RFC-1807 format to the requested format, if the BCS can do

that conversion. If the BCS cannot convert to that format, an

error is returned.

See Also: set_metadata

143

Method: pack

Arguments: none, name, type, format

Returned MIME Type: application/tar (or other MIME types as appropriate)

Example(s): ?method=pack

?method=pack&name=foo.pkg

?method=pack&type=payload

?method=pack&format=tar

Discussion: ÒpackÓ takes a number of interchangable arguments, but all

have default values so ÒpackÓ can be invoked sans arguments.

ÒtypeÓ specifies one of: bucket (entire bucket, default value),

package (package name specified in ÒnameÓ), payload (user

portion of the bucket only), or ride (internal structure of the

bucket only). ÒformatÓ currently only recognizes the value

ÒtarÓ, but this should change in the future (though ÒtarÓ will

remain the default value). ÒpackÓ will generate a stream of

either the entire bucket or just the requested part of a bucket.

This stream can be used to overwrite an existing bucket,

similar to the Unix fork()/exec() model.

See Also: unpack

144

Method: set_metadata

Arguments: name, upfile

Returned MIME Type: text/plain

Example(s): ?method=set_metadata&name=metadata.oams&upfile=X

Discussion: Òset_metadataÓ writes the metadata file named in ÒnameÓ and

supplied in ÒupfileÓ to the bucket. This method is useful in

either overwriting the RFC-1807 metadata (perhaps to

correct errors), or to upload other metadata formats; either

from BCS or entirely different formats that the BCS does not

know about.

See Also: metadata

145

Method: set_preference

Arguments: pref, upfile

Returned MIME Type: text/plain

Example(s): ?method=set_preference&pref=framable&upfile=no

Discussion: Òset_preferenceÓ writes the preference named in ÒprefÓ and

takes the value specified in ÒupfileÓ.

See Also: get_preference

146

Method: set_state

Arguments: state, upfile

Returned MIME Type: text/plain

Example(s): ?method=set_state&state=approved&upfile=yes

Discussion: Òset_stateÓ writes the state variable named in ÒstateÓ and

takethe value specified in ÒupfileÓ. ÒupfileÓ does not have to

be of type text/plain.

See Also: get_state

147

Method: set_version

Arguments: value

Returned MIME Type: text/plain

Example(s): ?method=set_version&value=2.0

Discussion: Òset_versionÓ sets the version of the bucket to the text string

specified in ÒvalueÓ.

See Also: version

148

Method: unpack

Arguments: format, type, upfile

Returned MIME Type: text/plain

Example(s): ?method=unpack&upfile=X

?method=unpack&format=tar&upfile=X

?method=unpack&format=tar&type=bucket&upfile=X

Discussion: ÒunpackÓ takes the bucket stream specified in ÒupfileÓ and

puts it into the bucket. ÒformatÓ can be specified, but the

only currenlty defined format is ÒtarÓ. ÒtypeÓ specifies one

of: bucket (entire bucket, default value), package (package

name specified in ÒnameÓ), payload (user portion of the

bucket only), or ride (internal structure of the bucket only).

See Also: pack

149

Method: version

Arguments: none

Returned MIME Type: text/plain

Example(s): ?method=version

Discussion: ÒversionÓ returns a text string to describe what type of

bucket it is. There is no structure imposed on what this

string can be.

See Also: set_version

150

APPENDIX C
DA API

Method: da_delete

Arguments: id

Returned MIME Type: text/plain

Example(s): ?method=da_delete&id=1234

Discussion: Òda_deleteÓ removes the object specified by the argument

ÒidÓ from the archive. ÒidÓ has no built in assumptions

regarding what type of unique identifier is used: CNRI

handles, DOIs, URLs, etc. all could be used. Currently,

Òda_deleteÓ does not return an error if ÒidÓ is not present in

the archive.

See Also: da_put, da_list

151

Method: da_get

Arguments: id, url

Returned MIME Type: text/plain

Example(s): ?method=da_get&url=http://foo.edu/1234/

?method=da_get&id=1234

Discussion: Òda_getÓ is an optional method for the DA; it is used

primarily to build a model where the archive still contains

some control over the access of the bucket, so that rather

than going directly to the bucket, the archived is asked to

redirect the user to the bucket. The buckets could be

modified to only accept responses originating from an

archive, and the DA could have regular bucket T&C

controlling the behavior of Òda_getÓ. Either argument ÒidÓ or

ÒurlÓ can be specified, and ÒurlÓ has precedence over ÒidÓ if

both are specified. The archive issues an http status code

302 for URL redirection.

See Also: none

152

Method: da_info

Arguments: none

Returned MIME Type: text/plain

Example(s): ?method=da_info

Discussion: Òda_infoÓ currently takes no arguments and simply returns

the element stored in holdings.pkg/info.txt. The

purpose of this method is to return a machine readable

description of the archive, its capabilities and its holdings.

Human readable descriptions would be available through the

standard bucket method ÒdisplayÓ. Òda_infoÓ should be

expanded to take arguments as to which format it would like

the archive information (and the MIME type set

accordingly), with possible conversion from the BCS.

See Also: none

153

Method: da_list

Arguments: id, url, adate, pdate, subject, metadata

Returned MIME Type: text/plain

Example(s): ?method=da_list

?method=da_list&metadata=on

?method=da_list&id=1234

?method=da_list&url=http://foo.edu/1234/

?method=da_list&adate=19990101

?method=da_list&pdate=19930430

?method=da_list&pdate=>19931231

?method=da_list&adate=19891231-20000101

?method=da_list&adate=subject=computer_science

Discussion: Òda_listÓ is the primary method of the DA. This is the

method that will be used by digital library services to

determine what contents an archive has, what contents have

changed since a specific date, and so forth. There are many

arguments, all of which can be combined in various forms to

select which ids (and URLs) will be returned. If no argument

is specified, all the archiveÕs contents are returned. If a

specific ÒidÓ or ÒurlÓ is requested, then Òda_listÓ is used for

an existence test, yielding the id/url if the object exists, and

nothing if it does not. There are three pre-defined ÒclustersÓ

(in NCSTRL+ terminology) defined for the DA: ÒadataeÓ

(accession date), ÒpdateÓ (publication date), ÒsubjectÓ. Both

date fields follow the format of YYYYMMDD. All dates are

non-inclusive. Dates can be specific days, or modified with

Ò<Ó, Ò>Ó, or Ò-Ò for less than, greater than, and range,

154

respectively. Ò<Ó and Ò>Ó must precede the date, and Ò-Ò

must have a valid date on either side. The date modifiers

cannot be combined. Regular expressions in the dates (i.e.

Ò1999.*Ó for the entire calendar year 1999) are not

supported. ÒsubjectÓ can be any text string from any subject

classification system; there are no syntactic restrictions on

ÒsubjectÓ. If ÒmetadataÓ is set to any value, the metadata for

the object(s) (if uploaeded) will be returned as well.

See Also: da_delete, da_put

155

Method: da_put

Arguments: id, url, adate, pdate, subject, metadata

Returned MIME Type: text/plain

Example(s): ?method=da_put&id=1234&url=http://foo.edu/1234/&adate

=19990215&pdate=19580413&subject=aeronautics&metada

ta=X

Discussion: Òda_putÓ places an object in the DA. There are many

arguments, but only ÒidÓ is mandatory Ð the others are

optional. ÒidÓ can be a unique identifier in any format, ÒurlÓ

is a regular URL, ÒadateÓ (accession date) and ÒpdateÓ

(publication date) are date strings in the format

YYYYMMDD, and ÒsubjectÓ can be from any

subject/discipline nomenclature. ÒmetadataÓ is the objects

metadata uploaded as per RFC-1867.

See Also: da_delete, da_list

156

APPENDIX D
BCS API

Method: bcs_convert_image

Arguments: in_format, out_format, upfile

Returned MIME Type: text/plain

Example(s): ?method=bcs_convert_image&in_format=ps&out_format=p

df&upfile=X

Discussion: Òbcs_convert_imageÓ takes the file uploaded as per RFC-

1867 in the argument ÒupfileÓ and converts it to the type

specified in the argument Òout_formatÓ. ÒupfileÓ is assumed

to be of the type specified in Òin_formatÓ Ð no checking is

done to verify that ÒupfileÓ is of type Òin_formatÓ.

Òin_formatÓ and Òout_formatÓ currently have the following

types defined (alternate values in parentheses):

- gif

- jpeg (jpg)

- tiff (tif)

- png

- ps

- pdf

See Also: bcs_convert_metadata

157

Method: bcs_convert_metadata

Arguments: in_format, out_format, in_file

Returned MIME Type: text/plain or text/xml

Example(s): ?method=bcs_convert_metadata&in_format=rfc1807&out_fo

rmat=oams&in_file=X

Discussion: Òbcs_convert_metadataÓ takes the metadata file uploaded as

per RFC-1867 in Òin_fileÓ and returns it converted to the

metadata format specified in Òout_formatÓ. The format of

Òin_fileÓ is specified in ÒupfileÓ, but no checking is done to

verify the accuracy between Òin_fileÓ and Òin_formatÓ.

Òin_formatÓ has the following values defined:

- refer

- dublincore

- rfc1807

- bibtex

Òout_formatÓ has the following values defined:

- refer

- dublincore

- rfc1807

- bibtex

- oams

See Also: bcs_convert_image

158

Method: bcs_list

Arguments: id, url

Returned MIME Type: text/plain

Example(s): ?method=bcs_list

?method=bcs_list&url=http://foo.edu/1234/

?method=bcs_list&id=1234

Discussion: Òbcs_listÓ with no arguments lists all the ids (and URLs) of

all the buckets that are registered with that BCS server. If

either of ÒurlÓ or ÒidÓ is specified, Òbcs_listÓ acts as a test for

existence; if the bucket identified by either ÒurlÓ or ÒidÓ is

registered with this BCS server, Òbcs_listÓ will return its id

or URL and will return nothing if the bucket is not registered.

See Also: bcs_register, bcs_unregister

159

Method: bcs_match

Arguments: threshold, link, report, ids

Returned MIME Type: text/plain

Example(s): ?method= bcs_match

?method=bcs_match&threshold=0.70

?method= bcs_match&link=on

?method= bcs_match&report=on

?method= bcs_match=ids=1234+2345+1122

Discussion: Òbcs_matchÓ performs similarity matching on registered

buckets using the cosine correlation with frequency term-

weighting measure. Òbcs_matchÓ can be a computational

expensive task and run for a long time (see Chapter Five for

details). Because the run time of a Òbcs_matchÓ session can

be much longer than an average WWW browser session,

Òbcs_matchÓ forks off a copy of itself to run on the server so

that it cannot be killed from the browser. There are a number

of arguments to Òbcs_matchÓ, all of which can be combined

with each other. ÒthresholdÓ defines a number between 0-1

for determining what constitutes ÒsimilarÓ documents (the

default value is 0.85). If ÒlinkÓ is set to any value,

Òbcs_matchÓ will upon completion of the similarity matching

attempt to automatically create the linkages between the

similar buckets. It will attempt to create a

BCS_Similarity.pkg package if one does not exist, and

then add the similar bucket, if not linked already (default

action is not to link). If ÒreportÓ is set to any value,

Òbcs_matchÓ will record the output of this run in the element

160

matching in the package bcs.pkg (default action is not

to record the output). If ÒidsÓ has 1 or more values, then

Òbcs_matchÓ will only compare the specified ids against the

entire list of registered buckets (the default action is to

compare all buckets against all buckets).

See Also: none

161

Method: bcs_message

Arguments: search, replace, mesg, repeat

Returned MIME Type: text/plain

Example(s): ?method=bcs_message&search=NASA+Lewis

?method=bcs_message&search=NASA+Lewis&replace=NA

SA+Glenn

?method=bcs_message&search=foo&mesg= destroy_bucket

?method=bcs_message&search=foo&mesg=destroy_bucket&

repeat=1

Discussion: Òbcs_messageÓ identifies buckets for communication

purposes. ÒsearchÓ is a mandatory argument that specifies

the regular expression to search for in all registered buckets.

If no further arguments are given, Òbcs_messageÓ returns the

ids or URLs of the buckets that have that regular expression.

If ÒreplaceÓ is specified, the ÒsearchÓ regular expression is

overwritten both in the registry and the bucket with the

regular expression in ÒreplaceÓ. If ÒmessageÓ is specified,

Òbcs_messageÓ sends all matching buckets the bucket

message specified in ÒmessageÓ. If ÒrepeatÓ is given an

integer value, the ÒreplaceÓ or ÒmesgÓ actions are repeated up

to (possibly less, depending on ÒsearchÓ) ÒrepeatÓ times.

Users should be aware when using ÒrepeatÓ that no

assumptions can be made on the order of how Òbcs_messageÓ

finds the regular expression specified in ÒsearchÓ.

See Also: none

162

Method: bcs_register

Arguments: id, url, metadata

Returned MIME Type: text/plain

Example(s): ?method=bcs_register&id=1234

?method=bcs_register&id=1234&url=http://foo.edu/1234/

?method= bcs_register&id=1234&metadata=X

Discussion: Òbcs_registerÓ places the bucket specified by ÒidÓ or ÒurlÓ in

the bucket communication space. ÒidÓ is mandatory, but

ÒurlÓ is optional. A bucket cannot the subject of

Òbcs_messageÓ, Òbcs_matchÓ and other BCS methods until it

has been registered. Although optional, ÒmetadataÓ contains

the metadata, uploaded as per RFC-1867, that will be used in

Òbcs_messageÓ and Òbcs_matchÓ.

See Also: bcs_list, bcs_unregister

163

Method: bcs_unregister

Arguments: id

Returned MIME Type: text/plain

Example(s): ?method= bcs_unregister&id=1234

Discussion: Òbcs_unregisterÓ removes the bucket specified by ÒidÓ from

the bucket communication space. The corresponding URLs

and metadata associated with that id will also be removed.

See Also: bcs_list, bcs_register

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 2001
3. REPORT TYPE AND DATES COVERED

Technical Memorandum
4. TITLE AND SUBTITLE

Buckets: Smart Objects for Digital Libraries
5. FUNDING NUMBERS

WU 992-16-05

6. AUTHOR(S)
Michael L. Nelson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

 L-18106

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/TM-2001-211049

11. SUPPLEMENTARY NOTES
Also published as a PhD dissertation for the Old Dominion University, Computer Science Department, Norfolk,
Virginia, August 2000.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Category 82 Distribution: Standard
Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Current discussion of digital libraries (DLs) is often dominated by the merits of the respective storage, search
and retrieval functionality of archives, repositories, search engines, search interfaces and database systems.
While these technologies are necessary for information management, the information content is more important
than the systems used for its storage and retrieval. Digital information should have the same long-term
survivability prospects as traditional hardcopy information and should be protected to the extent possible from
evolving search engine technologies and vendor vagaries in database management systems. Information content
and information retrieval systems should progress on independent paths and make limited assumptions about the
status or capabilities of the other.Digital information can achieve independence from archives and DL systems
through the use of buckets. Buckets are an aggregative, intelligent construct for publishing in DLs. Buckets
allow the decoupling of information content from information storage and retrieval. Buckets exist within the
Smart Objects and Dumb Archives model for DLs in that many of the functionalities and responsibilities
traditionally associated with archives are Òpushed downÓ (making the archives ÒdumberÓ) into the buckets
(making them ÒsmarterÓ). Some of the responsibilities imbued to buckets are the enforcement of their terms and
conditions, and maintenance and display of their contents.

14. SUBJECT TERMS
WWW, Digital Libraries, Information Retrieval, STI, Archives

15. NUMBER OF PAGES
177

 16. PRICE CODE

17. SEC U RITY CL ASSIF IC AT ION
O F REPO R T
Unclassified

18. SEC U RITY CL ASSIF IC AT ION
O F TH IS PA GE
Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT
Unclassified

20. LIMITATION
 OF ABSTRACT
 UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z-39-18
298-102

